Local laws for non-Hermitian random matrices

The product of m ∈ N independent random square matrices whose elements are independent identically distributed random variables with zero mean and unit variance is considered. It is known that, as the size of the matrices increases to infinity, the empirical spectral measure of the normalized eigenv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Doklady. Mathematics 2017-11, Vol.96 (3), p.558-560
Hauptverfasser: Götze, F., Naumov, A. A., Tikhomirov, A. N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 560
container_issue 3
container_start_page 558
container_title Doklady. Mathematics
container_volume 96
creator Götze, F.
Naumov, A. A.
Tikhomirov, A. N.
description The product of m ∈ N independent random square matrices whose elements are independent identically distributed random variables with zero mean and unit variance is considered. It is known that, as the size of the matrices increases to infinity, the empirical spectral measure of the normalized eigenvalues of the product converges with probability 1 to the distribution of the mth power of the random variable uniformly distributed on the unit disk of the complex plane. In particular, in the case of m = 1, the circular law holds. The purpose of this paper is to prove the validity of the local circular law (as well as its generalization to the case of any fixed m) in the case where the distribution of the matrix elements has finite absolute moment of order 4 + δ,δ > 0,. Recent results of Bourgade, Yau, and Yin, of Tao and Vu, and of Nemish are generalized.
doi_str_mv 10.1134/S1064562417060072
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1984771397</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1984771397</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-a3dbc604644c367880b495fb20b4148e0ac198c55b67c7a7da5857f7f4de5aeb3</originalsourceid><addsrcrecordid>eNp1kE9LxDAUxIMouK5-AG8Fr1bfy9_2KIu6QsGDeg5pmkiXbbMmXcRvb5Z6EMTTPJj5zYMh5BLhBpHx2xcEyYWkHBVIAEWPyAIFw7Jikh7nO9vlwT8lZyltALigAAty3QRrtsXWfKbCh1iMYSzXLg791JuxiGbswlAMZoq9demcnHizTe7iR5fk7eH-dbUum-fHp9VdU1qGcioN61orgUvOLZOqqqDltfAtzYq8cmAs1pUVopXKKqM6IyqhvPK8c8K4li3J1dy7i-Fj79KkN2Efx_xSZ5ArhaxWOYVzysaQUnRe72I_mPilEfRhFP1nlMzQmUk5O767-Kv5X-gbc31hjA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1984771397</pqid></control><display><type>article</type><title>Local laws for non-Hermitian random matrices</title><source>SpringerLink Journals - AutoHoldings</source><creator>Götze, F. ; Naumov, A. A. ; Tikhomirov, A. N.</creator><creatorcontrib>Götze, F. ; Naumov, A. A. ; Tikhomirov, A. N.</creatorcontrib><description>The product of m ∈ N independent random square matrices whose elements are independent identically distributed random variables with zero mean and unit variance is considered. It is known that, as the size of the matrices increases to infinity, the empirical spectral measure of the normalized eigenvalues of the product converges with probability 1 to the distribution of the mth power of the random variable uniformly distributed on the unit disk of the complex plane. In particular, in the case of m = 1, the circular law holds. The purpose of this paper is to prove the validity of the local circular law (as well as its generalization to the case of any fixed m) in the case where the distribution of the matrix elements has finite absolute moment of order 4 + δ,δ &gt; 0,. Recent results of Bourgade, Yau, and Yin, of Tao and Vu, and of Nemish are generalized.</description><identifier>ISSN: 1064-5624</identifier><identifier>EISSN: 1531-8362</identifier><identifier>DOI: 10.1134/S1064562417060072</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Eigenvalues ; Electric power distribution ; Independent variables ; Mathematics ; Mathematics and Statistics ; Random variables</subject><ispartof>Doklady. Mathematics, 2017-11, Vol.96 (3), p.558-560</ispartof><rights>Pleiades Publishing, Ltd. 2017</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-a3dbc604644c367880b495fb20b4148e0ac198c55b67c7a7da5857f7f4de5aeb3</citedby><cites>FETCH-LOGICAL-c316t-a3dbc604644c367880b495fb20b4148e0ac198c55b67c7a7da5857f7f4de5aeb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1064562417060072$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1064562417060072$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Götze, F.</creatorcontrib><creatorcontrib>Naumov, A. A.</creatorcontrib><creatorcontrib>Tikhomirov, A. N.</creatorcontrib><title>Local laws for non-Hermitian random matrices</title><title>Doklady. Mathematics</title><addtitle>Dokl. Math</addtitle><description>The product of m ∈ N independent random square matrices whose elements are independent identically distributed random variables with zero mean and unit variance is considered. It is known that, as the size of the matrices increases to infinity, the empirical spectral measure of the normalized eigenvalues of the product converges with probability 1 to the distribution of the mth power of the random variable uniformly distributed on the unit disk of the complex plane. In particular, in the case of m = 1, the circular law holds. The purpose of this paper is to prove the validity of the local circular law (as well as its generalization to the case of any fixed m) in the case where the distribution of the matrix elements has finite absolute moment of order 4 + δ,δ &gt; 0,. Recent results of Bourgade, Yau, and Yin, of Tao and Vu, and of Nemish are generalized.</description><subject>Eigenvalues</subject><subject>Electric power distribution</subject><subject>Independent variables</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Random variables</subject><issn>1064-5624</issn><issn>1531-8362</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LxDAUxIMouK5-AG8Fr1bfy9_2KIu6QsGDeg5pmkiXbbMmXcRvb5Z6EMTTPJj5zYMh5BLhBpHx2xcEyYWkHBVIAEWPyAIFw7Jikh7nO9vlwT8lZyltALigAAty3QRrtsXWfKbCh1iMYSzXLg791JuxiGbswlAMZoq9demcnHizTe7iR5fk7eH-dbUum-fHp9VdU1qGcioN61orgUvOLZOqqqDltfAtzYq8cmAs1pUVopXKKqM6IyqhvPK8c8K4li3J1dy7i-Fj79KkN2Efx_xSZ5ArhaxWOYVzysaQUnRe72I_mPilEfRhFP1nlMzQmUk5O767-Kv5X-gbc31hjA</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>Götze, F.</creator><creator>Naumov, A. A.</creator><creator>Tikhomirov, A. N.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20171101</creationdate><title>Local laws for non-Hermitian random matrices</title><author>Götze, F. ; Naumov, A. A. ; Tikhomirov, A. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-a3dbc604644c367880b495fb20b4148e0ac198c55b67c7a7da5857f7f4de5aeb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Eigenvalues</topic><topic>Electric power distribution</topic><topic>Independent variables</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Random variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Götze, F.</creatorcontrib><creatorcontrib>Naumov, A. A.</creatorcontrib><creatorcontrib>Tikhomirov, A. N.</creatorcontrib><collection>CrossRef</collection><jtitle>Doklady. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Götze, F.</au><au>Naumov, A. A.</au><au>Tikhomirov, A. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local laws for non-Hermitian random matrices</atitle><jtitle>Doklady. Mathematics</jtitle><stitle>Dokl. Math</stitle><date>2017-11-01</date><risdate>2017</risdate><volume>96</volume><issue>3</issue><spage>558</spage><epage>560</epage><pages>558-560</pages><issn>1064-5624</issn><eissn>1531-8362</eissn><abstract>The product of m ∈ N independent random square matrices whose elements are independent identically distributed random variables with zero mean and unit variance is considered. It is known that, as the size of the matrices increases to infinity, the empirical spectral measure of the normalized eigenvalues of the product converges with probability 1 to the distribution of the mth power of the random variable uniformly distributed on the unit disk of the complex plane. In particular, in the case of m = 1, the circular law holds. The purpose of this paper is to prove the validity of the local circular law (as well as its generalization to the case of any fixed m) in the case where the distribution of the matrix elements has finite absolute moment of order 4 + δ,δ &gt; 0,. Recent results of Bourgade, Yau, and Yin, of Tao and Vu, and of Nemish are generalized.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1064562417060072</doi><tpages>3</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1064-5624
ispartof Doklady. Mathematics, 2017-11, Vol.96 (3), p.558-560
issn 1064-5624
1531-8362
language eng
recordid cdi_proquest_journals_1984771397
source SpringerLink Journals - AutoHoldings
subjects Eigenvalues
Electric power distribution
Independent variables
Mathematics
Mathematics and Statistics
Random variables
title Local laws for non-Hermitian random matrices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T04%3A57%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20laws%20for%20non-Hermitian%20random%20matrices&rft.jtitle=Doklady.%20Mathematics&rft.au=G%C3%B6tze,%20F.&rft.date=2017-11-01&rft.volume=96&rft.issue=3&rft.spage=558&rft.epage=560&rft.pages=558-560&rft.issn=1064-5624&rft.eissn=1531-8362&rft_id=info:doi/10.1134/S1064562417060072&rft_dat=%3Cproquest_cross%3E1984771397%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1984771397&rft_id=info:pmid/&rfr_iscdi=true