Laser Porosificated Silicon Anodes for Lithium Ion Batteries
This study presents the first laser porosificated silicon anode for lithium‐ion batteries. The pulsed laser induced pore creation improves the cycling stability of the d = 210 nm thick sputtered thin film anodes compared to plain Si. Galvanostatic cycling with a charge capacity limited to C = 932 mA...
Gespeichert in:
Veröffentlicht in: | Advanced energy materials 2018-01, Vol.8 (1), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Advanced energy materials |
container_volume | 8 |
creator | Sämann, Christian Kelesiadou, Katerina Hosseinioun, Seyedeh Sheida Wachtler, Mario Köhler, Jürgen R. Birke, Kai Peter Schubert, Markus B. Werner, Jürgen H. |
description | This study presents the first laser porosificated silicon anode for lithium‐ion batteries. The pulsed laser induced pore creation improves the cycling stability of the d = 210 nm thick sputtered thin film anodes compared to plain Si. Galvanostatic cycling with a charge capacity limited to C = 932 mAh g−1 and a 2C current rate shows a stable cycling for more than N = 600 cycles. After N = 3000 cycles the laser porosificated and crystallized Si has a remaining capacity of C3000 > 120 mAh g−1. Postmortem scanning electron microscopy images after N = 3000 cycles prove that the laser porosification reduces cracks in the active layer.
In lithium batteries, silicon anodes expand up to 250% in volume during lithium insertion, which mechanically damages the silicon. The morphology of silicon must be adjusted for this volume expansion. Laser porosification uses single laser pulses to produce porous structured silicon films, which improves the cycling stability of the silicon anodes. |
doi_str_mv | 10.1002/aenm.201701705 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1984751517</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1984751517</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3565-24f95706d44fbfb208371cc94b321e29a80ab2e4970bd6bad5c35313e4d5d4303</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWGqvnhc8b83n7ga81FJrYf0A9RyymwmmtJuabJH-e7NU6tFhYIbhfWaYF6FrgqcEY3qrodtOKSblkOIMjUhBeF5UHJ-fekYv0STGNU7BJcGMjdBdrSOE7NUHH511re7BZG9u41rfZbPOG4iZ9SGrXf_p9ttslcb3uu8hOIhX6MLqTYTJbx2jj4fF-_wxr1-Wq_mszlsmCpFTbqUocWE4t41tKK5YSdpW8oZRAlTqCuuGApclbkzRaCMSxwgDboThDLMxujnu3QX_tYfYq7Xfhy6dVERWvBREkDKppkdVm36JAazaBbfV4aAIVoNJajBJnUxKgDwC324Dh3_UarZ4fvpjfwBjimla</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1984751517</pqid></control><display><type>article</type><title>Laser Porosificated Silicon Anodes for Lithium Ion Batteries</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Sämann, Christian ; Kelesiadou, Katerina ; Hosseinioun, Seyedeh Sheida ; Wachtler, Mario ; Köhler, Jürgen R. ; Birke, Kai Peter ; Schubert, Markus B. ; Werner, Jürgen H.</creator><creatorcontrib>Sämann, Christian ; Kelesiadou, Katerina ; Hosseinioun, Seyedeh Sheida ; Wachtler, Mario ; Köhler, Jürgen R. ; Birke, Kai Peter ; Schubert, Markus B. ; Werner, Jürgen H.</creatorcontrib><description>This study presents the first laser porosificated silicon anode for lithium‐ion batteries. The pulsed laser induced pore creation improves the cycling stability of the d = 210 nm thick sputtered thin film anodes compared to plain Si. Galvanostatic cycling with a charge capacity limited to C = 932 mAh g−1 and a 2C current rate shows a stable cycling for more than N = 600 cycles. After N = 3000 cycles the laser porosificated and crystallized Si has a remaining capacity of C3000 > 120 mAh g−1. Postmortem scanning electron microscopy images after N = 3000 cycles prove that the laser porosification reduces cracks in the active layer.
In lithium batteries, silicon anodes expand up to 250% in volume during lithium insertion, which mechanically damages the silicon. The morphology of silicon must be adjusted for this volume expansion. Laser porosification uses single laser pulses to produce porous structured silicon films, which improves the cycling stability of the silicon anodes.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.201701705</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Anodes ; Crystallization ; Cycles ; Electron microscopy ; Lasers ; Lithium ; Lithium-ion batteries ; porous materials ; Rechargeable batteries ; Scanning electron microscopy ; Silicon ; silicon anodes</subject><ispartof>Advanced energy materials, 2018-01, Vol.8 (1), p.n/a</ispartof><rights>2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3565-24f95706d44fbfb208371cc94b321e29a80ab2e4970bd6bad5c35313e4d5d4303</citedby><cites>FETCH-LOGICAL-c3565-24f95706d44fbfb208371cc94b321e29a80ab2e4970bd6bad5c35313e4d5d4303</cites><orcidid>0000-0002-6683-8936</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.201701705$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.201701705$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Sämann, Christian</creatorcontrib><creatorcontrib>Kelesiadou, Katerina</creatorcontrib><creatorcontrib>Hosseinioun, Seyedeh Sheida</creatorcontrib><creatorcontrib>Wachtler, Mario</creatorcontrib><creatorcontrib>Köhler, Jürgen R.</creatorcontrib><creatorcontrib>Birke, Kai Peter</creatorcontrib><creatorcontrib>Schubert, Markus B.</creatorcontrib><creatorcontrib>Werner, Jürgen H.</creatorcontrib><title>Laser Porosificated Silicon Anodes for Lithium Ion Batteries</title><title>Advanced energy materials</title><description>This study presents the first laser porosificated silicon anode for lithium‐ion batteries. The pulsed laser induced pore creation improves the cycling stability of the d = 210 nm thick sputtered thin film anodes compared to plain Si. Galvanostatic cycling with a charge capacity limited to C = 932 mAh g−1 and a 2C current rate shows a stable cycling for more than N = 600 cycles. After N = 3000 cycles the laser porosificated and crystallized Si has a remaining capacity of C3000 > 120 mAh g−1. Postmortem scanning electron microscopy images after N = 3000 cycles prove that the laser porosification reduces cracks in the active layer.
In lithium batteries, silicon anodes expand up to 250% in volume during lithium insertion, which mechanically damages the silicon. The morphology of silicon must be adjusted for this volume expansion. Laser porosification uses single laser pulses to produce porous structured silicon films, which improves the cycling stability of the silicon anodes.</description><subject>Anodes</subject><subject>Crystallization</subject><subject>Cycles</subject><subject>Electron microscopy</subject><subject>Lasers</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>porous materials</subject><subject>Rechargeable batteries</subject><subject>Scanning electron microscopy</subject><subject>Silicon</subject><subject>silicon anodes</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWGqvnhc8b83n7ga81FJrYf0A9RyymwmmtJuabJH-e7NU6tFhYIbhfWaYF6FrgqcEY3qrodtOKSblkOIMjUhBeF5UHJ-fekYv0STGNU7BJcGMjdBdrSOE7NUHH511re7BZG9u41rfZbPOG4iZ9SGrXf_p9ttslcb3uu8hOIhX6MLqTYTJbx2jj4fF-_wxr1-Wq_mszlsmCpFTbqUocWE4t41tKK5YSdpW8oZRAlTqCuuGApclbkzRaCMSxwgDboThDLMxujnu3QX_tYfYq7Xfhy6dVERWvBREkDKppkdVm36JAazaBbfV4aAIVoNJajBJnUxKgDwC324Dh3_UarZ4fvpjfwBjimla</recordid><startdate>20180105</startdate><enddate>20180105</enddate><creator>Sämann, Christian</creator><creator>Kelesiadou, Katerina</creator><creator>Hosseinioun, Seyedeh Sheida</creator><creator>Wachtler, Mario</creator><creator>Köhler, Jürgen R.</creator><creator>Birke, Kai Peter</creator><creator>Schubert, Markus B.</creator><creator>Werner, Jürgen H.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6683-8936</orcidid></search><sort><creationdate>20180105</creationdate><title>Laser Porosificated Silicon Anodes for Lithium Ion Batteries</title><author>Sämann, Christian ; Kelesiadou, Katerina ; Hosseinioun, Seyedeh Sheida ; Wachtler, Mario ; Köhler, Jürgen R. ; Birke, Kai Peter ; Schubert, Markus B. ; Werner, Jürgen H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3565-24f95706d44fbfb208371cc94b321e29a80ab2e4970bd6bad5c35313e4d5d4303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anodes</topic><topic>Crystallization</topic><topic>Cycles</topic><topic>Electron microscopy</topic><topic>Lasers</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>porous materials</topic><topic>Rechargeable batteries</topic><topic>Scanning electron microscopy</topic><topic>Silicon</topic><topic>silicon anodes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sämann, Christian</creatorcontrib><creatorcontrib>Kelesiadou, Katerina</creatorcontrib><creatorcontrib>Hosseinioun, Seyedeh Sheida</creatorcontrib><creatorcontrib>Wachtler, Mario</creatorcontrib><creatorcontrib>Köhler, Jürgen R.</creatorcontrib><creatorcontrib>Birke, Kai Peter</creatorcontrib><creatorcontrib>Schubert, Markus B.</creatorcontrib><creatorcontrib>Werner, Jürgen H.</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sämann, Christian</au><au>Kelesiadou, Katerina</au><au>Hosseinioun, Seyedeh Sheida</au><au>Wachtler, Mario</au><au>Köhler, Jürgen R.</au><au>Birke, Kai Peter</au><au>Schubert, Markus B.</au><au>Werner, Jürgen H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Laser Porosificated Silicon Anodes for Lithium Ion Batteries</atitle><jtitle>Advanced energy materials</jtitle><date>2018-01-05</date><risdate>2018</risdate><volume>8</volume><issue>1</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>This study presents the first laser porosificated silicon anode for lithium‐ion batteries. The pulsed laser induced pore creation improves the cycling stability of the d = 210 nm thick sputtered thin film anodes compared to plain Si. Galvanostatic cycling with a charge capacity limited to C = 932 mAh g−1 and a 2C current rate shows a stable cycling for more than N = 600 cycles. After N = 3000 cycles the laser porosificated and crystallized Si has a remaining capacity of C3000 > 120 mAh g−1. Postmortem scanning electron microscopy images after N = 3000 cycles prove that the laser porosification reduces cracks in the active layer.
In lithium batteries, silicon anodes expand up to 250% in volume during lithium insertion, which mechanically damages the silicon. The morphology of silicon must be adjusted for this volume expansion. Laser porosification uses single laser pulses to produce porous structured silicon films, which improves the cycling stability of the silicon anodes.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.201701705</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-6683-8936</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1614-6832 |
ispartof | Advanced energy materials, 2018-01, Vol.8 (1), p.n/a |
issn | 1614-6832 1614-6840 |
language | eng |
recordid | cdi_proquest_journals_1984751517 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Anodes Crystallization Cycles Electron microscopy Lasers Lithium Lithium-ion batteries porous materials Rechargeable batteries Scanning electron microscopy Silicon silicon anodes |
title | Laser Porosificated Silicon Anodes for Lithium Ion Batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T19%3A24%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Laser%20Porosificated%20Silicon%20Anodes%20for%20Lithium%20Ion%20Batteries&rft.jtitle=Advanced%20energy%20materials&rft.au=S%C3%A4mann,%20Christian&rft.date=2018-01-05&rft.volume=8&rft.issue=1&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.201701705&rft_dat=%3Cproquest_cross%3E1984751517%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1984751517&rft_id=info:pmid/&rfr_iscdi=true |