Laser Porosificated Silicon Anodes for Lithium Ion Batteries

This study presents the first laser porosificated silicon anode for lithium‐ion batteries. The pulsed laser induced pore creation improves the cycling stability of the d = 210 nm thick sputtered thin film anodes compared to plain Si. Galvanostatic cycling with a charge capacity limited to C = 932 mA...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2018-01, Vol.8 (1), p.n/a
Hauptverfasser: Sämann, Christian, Kelesiadou, Katerina, Hosseinioun, Seyedeh Sheida, Wachtler, Mario, Köhler, Jürgen R., Birke, Kai Peter, Schubert, Markus B., Werner, Jürgen H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 1
container_start_page
container_title Advanced energy materials
container_volume 8
creator Sämann, Christian
Kelesiadou, Katerina
Hosseinioun, Seyedeh Sheida
Wachtler, Mario
Köhler, Jürgen R.
Birke, Kai Peter
Schubert, Markus B.
Werner, Jürgen H.
description This study presents the first laser porosificated silicon anode for lithium‐ion batteries. The pulsed laser induced pore creation improves the cycling stability of the d = 210 nm thick sputtered thin film anodes compared to plain Si. Galvanostatic cycling with a charge capacity limited to C = 932 mAh g−1 and a 2C current rate shows a stable cycling for more than N = 600 cycles. After N = 3000 cycles the laser porosificated and crystallized Si has a remaining capacity of C3000 > 120 mAh g−1. Postmortem scanning electron microscopy images after N = 3000 cycles prove that the laser porosification reduces cracks in the active layer. In lithium batteries, silicon anodes expand up to 250% in volume during lithium insertion, which mechanically damages the silicon. The morphology of silicon must be adjusted for this volume expansion. Laser porosification uses single laser pulses to produce porous structured silicon films, which improves the cycling stability of the silicon anodes.
doi_str_mv 10.1002/aenm.201701705
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1984751517</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1984751517</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3565-24f95706d44fbfb208371cc94b321e29a80ab2e4970bd6bad5c35313e4d5d4303</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWGqvnhc8b83n7ga81FJrYf0A9RyymwmmtJuabJH-e7NU6tFhYIbhfWaYF6FrgqcEY3qrodtOKSblkOIMjUhBeF5UHJ-fekYv0STGNU7BJcGMjdBdrSOE7NUHH511re7BZG9u41rfZbPOG4iZ9SGrXf_p9ttslcb3uu8hOIhX6MLqTYTJbx2jj4fF-_wxr1-Wq_mszlsmCpFTbqUocWE4t41tKK5YSdpW8oZRAlTqCuuGApclbkzRaCMSxwgDboThDLMxujnu3QX_tYfYq7Xfhy6dVERWvBREkDKppkdVm36JAazaBbfV4aAIVoNJajBJnUxKgDwC324Dh3_UarZ4fvpjfwBjimla</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1984751517</pqid></control><display><type>article</type><title>Laser Porosificated Silicon Anodes for Lithium Ion Batteries</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Sämann, Christian ; Kelesiadou, Katerina ; Hosseinioun, Seyedeh Sheida ; Wachtler, Mario ; Köhler, Jürgen R. ; Birke, Kai Peter ; Schubert, Markus B. ; Werner, Jürgen H.</creator><creatorcontrib>Sämann, Christian ; Kelesiadou, Katerina ; Hosseinioun, Seyedeh Sheida ; Wachtler, Mario ; Köhler, Jürgen R. ; Birke, Kai Peter ; Schubert, Markus B. ; Werner, Jürgen H.</creatorcontrib><description>This study presents the first laser porosificated silicon anode for lithium‐ion batteries. The pulsed laser induced pore creation improves the cycling stability of the d = 210 nm thick sputtered thin film anodes compared to plain Si. Galvanostatic cycling with a charge capacity limited to C = 932 mAh g−1 and a 2C current rate shows a stable cycling for more than N = 600 cycles. After N = 3000 cycles the laser porosificated and crystallized Si has a remaining capacity of C3000 &gt; 120 mAh g−1. Postmortem scanning electron microscopy images after N = 3000 cycles prove that the laser porosification reduces cracks in the active layer. In lithium batteries, silicon anodes expand up to 250% in volume during lithium insertion, which mechanically damages the silicon. The morphology of silicon must be adjusted for this volume expansion. Laser porosification uses single laser pulses to produce porous structured silicon films, which improves the cycling stability of the silicon anodes.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.201701705</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Anodes ; Crystallization ; Cycles ; Electron microscopy ; Lasers ; Lithium ; Lithium-ion batteries ; porous materials ; Rechargeable batteries ; Scanning electron microscopy ; Silicon ; silicon anodes</subject><ispartof>Advanced energy materials, 2018-01, Vol.8 (1), p.n/a</ispartof><rights>2017 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2018 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3565-24f95706d44fbfb208371cc94b321e29a80ab2e4970bd6bad5c35313e4d5d4303</citedby><cites>FETCH-LOGICAL-c3565-24f95706d44fbfb208371cc94b321e29a80ab2e4970bd6bad5c35313e4d5d4303</cites><orcidid>0000-0002-6683-8936</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.201701705$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.201701705$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Sämann, Christian</creatorcontrib><creatorcontrib>Kelesiadou, Katerina</creatorcontrib><creatorcontrib>Hosseinioun, Seyedeh Sheida</creatorcontrib><creatorcontrib>Wachtler, Mario</creatorcontrib><creatorcontrib>Köhler, Jürgen R.</creatorcontrib><creatorcontrib>Birke, Kai Peter</creatorcontrib><creatorcontrib>Schubert, Markus B.</creatorcontrib><creatorcontrib>Werner, Jürgen H.</creatorcontrib><title>Laser Porosificated Silicon Anodes for Lithium Ion Batteries</title><title>Advanced energy materials</title><description>This study presents the first laser porosificated silicon anode for lithium‐ion batteries. The pulsed laser induced pore creation improves the cycling stability of the d = 210 nm thick sputtered thin film anodes compared to plain Si. Galvanostatic cycling with a charge capacity limited to C = 932 mAh g−1 and a 2C current rate shows a stable cycling for more than N = 600 cycles. After N = 3000 cycles the laser porosificated and crystallized Si has a remaining capacity of C3000 &gt; 120 mAh g−1. Postmortem scanning electron microscopy images after N = 3000 cycles prove that the laser porosification reduces cracks in the active layer. In lithium batteries, silicon anodes expand up to 250% in volume during lithium insertion, which mechanically damages the silicon. The morphology of silicon must be adjusted for this volume expansion. Laser porosification uses single laser pulses to produce porous structured silicon films, which improves the cycling stability of the silicon anodes.</description><subject>Anodes</subject><subject>Crystallization</subject><subject>Cycles</subject><subject>Electron microscopy</subject><subject>Lasers</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>porous materials</subject><subject>Rechargeable batteries</subject><subject>Scanning electron microscopy</subject><subject>Silicon</subject><subject>silicon anodes</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWGqvnhc8b83n7ga81FJrYf0A9RyymwmmtJuabJH-e7NU6tFhYIbhfWaYF6FrgqcEY3qrodtOKSblkOIMjUhBeF5UHJ-fekYv0STGNU7BJcGMjdBdrSOE7NUHH511re7BZG9u41rfZbPOG4iZ9SGrXf_p9ttslcb3uu8hOIhX6MLqTYTJbx2jj4fF-_wxr1-Wq_mszlsmCpFTbqUocWE4t41tKK5YSdpW8oZRAlTqCuuGApclbkzRaCMSxwgDboThDLMxujnu3QX_tYfYq7Xfhy6dVERWvBREkDKppkdVm36JAazaBbfV4aAIVoNJajBJnUxKgDwC324Dh3_UarZ4fvpjfwBjimla</recordid><startdate>20180105</startdate><enddate>20180105</enddate><creator>Sämann, Christian</creator><creator>Kelesiadou, Katerina</creator><creator>Hosseinioun, Seyedeh Sheida</creator><creator>Wachtler, Mario</creator><creator>Köhler, Jürgen R.</creator><creator>Birke, Kai Peter</creator><creator>Schubert, Markus B.</creator><creator>Werner, Jürgen H.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6683-8936</orcidid></search><sort><creationdate>20180105</creationdate><title>Laser Porosificated Silicon Anodes for Lithium Ion Batteries</title><author>Sämann, Christian ; Kelesiadou, Katerina ; Hosseinioun, Seyedeh Sheida ; Wachtler, Mario ; Köhler, Jürgen R. ; Birke, Kai Peter ; Schubert, Markus B. ; Werner, Jürgen H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3565-24f95706d44fbfb208371cc94b321e29a80ab2e4970bd6bad5c35313e4d5d4303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anodes</topic><topic>Crystallization</topic><topic>Cycles</topic><topic>Electron microscopy</topic><topic>Lasers</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>porous materials</topic><topic>Rechargeable batteries</topic><topic>Scanning electron microscopy</topic><topic>Silicon</topic><topic>silicon anodes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sämann, Christian</creatorcontrib><creatorcontrib>Kelesiadou, Katerina</creatorcontrib><creatorcontrib>Hosseinioun, Seyedeh Sheida</creatorcontrib><creatorcontrib>Wachtler, Mario</creatorcontrib><creatorcontrib>Köhler, Jürgen R.</creatorcontrib><creatorcontrib>Birke, Kai Peter</creatorcontrib><creatorcontrib>Schubert, Markus B.</creatorcontrib><creatorcontrib>Werner, Jürgen H.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sämann, Christian</au><au>Kelesiadou, Katerina</au><au>Hosseinioun, Seyedeh Sheida</au><au>Wachtler, Mario</au><au>Köhler, Jürgen R.</au><au>Birke, Kai Peter</au><au>Schubert, Markus B.</au><au>Werner, Jürgen H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Laser Porosificated Silicon Anodes for Lithium Ion Batteries</atitle><jtitle>Advanced energy materials</jtitle><date>2018-01-05</date><risdate>2018</risdate><volume>8</volume><issue>1</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>This study presents the first laser porosificated silicon anode for lithium‐ion batteries. The pulsed laser induced pore creation improves the cycling stability of the d = 210 nm thick sputtered thin film anodes compared to plain Si. Galvanostatic cycling with a charge capacity limited to C = 932 mAh g−1 and a 2C current rate shows a stable cycling for more than N = 600 cycles. After N = 3000 cycles the laser porosificated and crystallized Si has a remaining capacity of C3000 &gt; 120 mAh g−1. Postmortem scanning electron microscopy images after N = 3000 cycles prove that the laser porosification reduces cracks in the active layer. In lithium batteries, silicon anodes expand up to 250% in volume during lithium insertion, which mechanically damages the silicon. The morphology of silicon must be adjusted for this volume expansion. Laser porosification uses single laser pulses to produce porous structured silicon films, which improves the cycling stability of the silicon anodes.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.201701705</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-6683-8936</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2018-01, Vol.8 (1), p.n/a
issn 1614-6832
1614-6840
language eng
recordid cdi_proquest_journals_1984751517
source Wiley Online Library Journals Frontfile Complete
subjects Anodes
Crystallization
Cycles
Electron microscopy
Lasers
Lithium
Lithium-ion batteries
porous materials
Rechargeable batteries
Scanning electron microscopy
Silicon
silicon anodes
title Laser Porosificated Silicon Anodes for Lithium Ion Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T19%3A24%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Laser%20Porosificated%20Silicon%20Anodes%20for%20Lithium%20Ion%20Batteries&rft.jtitle=Advanced%20energy%20materials&rft.au=S%C3%A4mann,%20Christian&rft.date=2018-01-05&rft.volume=8&rft.issue=1&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.201701705&rft_dat=%3Cproquest_cross%3E1984751517%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1984751517&rft_id=info:pmid/&rfr_iscdi=true