Coupled constraint Nash equilibria in environmental games

The focus of this paper is on how to model and solve an environmental compliance problem using [Rosen, J.B., 1965. Existence and uniqueness of equilibrium points for concave n-person games. Econometrica 33 (3), 520–534] seminal idea of coupled constraint equilibrium. First, Rosen's results abou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Resource and energy economics 2005-06, Vol.27 (2), p.157-181
1. Verfasser: Krawczyk, Jacek B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 181
container_issue 2
container_start_page 157
container_title Resource and energy economics
container_volume 27
creator Krawczyk, Jacek B.
description The focus of this paper is on how to model and solve an environmental compliance problem using [Rosen, J.B., 1965. Existence and uniqueness of equilibrium points for concave n-person games. Econometrica 33 (3), 520–534] seminal idea of coupled constraint equilibrium. First, Rosen's results about the existence and uniqueness of a Nash normalised equilibrium for coupled constraint games are explained. These results are then combined with a numerical approach to game solutions based on the Nikaido–Isoda function. A river basin pollution game, which is a model for a common nonpoint source pollution problem, is solved numerically using this approach. In the game, the agents face a joint constraint on the total pollution, which defines a coupled constraint set in the combined strategy space. This makes the game special in terms of the strategy spaces. Unlike for standard games where they are defined separately for each player, here we have a joint constraint on the combined strategy space of all players. Hence, the game needs coupled constraint equilibrium as the solution concept. Static and (open-loop) dynamic equilibria are computed for the basin problem under the discussed equilibrium concept. All equilibria are instructive for the legislator, in that they contain information on how to choose the “optimal” charges, under which agents obey the constraints.
doi_str_mv 10.1016/j.reseneeco.2004.08.001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_198469459</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0928765504000661</els_id><sourcerecordid>833056791</sourcerecordid><originalsourceid>FETCH-LOGICAL-c567t-5ec689162e3cdde2d915a5381ae13c4923484a8b464cb6b01697ab0b49a3c1b93</originalsourceid><addsrcrecordid>eNqFkE9r3DAQxUVJoZu0n6GmkKOdkfX_GJYkbVnSS3sWsjzbaPHKjuRdyLevjENy7GE0c3hv5ulHyFcKDQUqbw5NwowR0Y9NC8Ab0A0A_UA2VCtWQ9vSC7IB0-paSSE-kcucDwAgAMyGmO14mgbsKz_GPCcX4lw9uvxU4fMpDKFLwVUhVhjPIY3xiHF2Q_XXHTF_Jh_3bsj45bVfkT_3d7-33-vdr4cf29td7YVUcy3QS22obJH5vse2N1Q4wTR1SJnnpmVcc6c7LrnvZFd-ZJTroOPGMU87w67It3XvlMbnE-bZHsZTiuWkpUZzabhYRGoV-TTmnHBvpxSOLr1YCnbBZA_2DZNdMFnQtmAqzp-rM-GE_s2GiKveni1zrSrPyzIUbqWFZSw1laJCWaqpfZqPZdn1a1aXvRv2yUUf8nsWqaRisMS9XXVYwJ0DJpt9wOixDwn9bPsx_Df4P1xPmpU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>198469459</pqid></control><display><type>article</type><title>Coupled constraint Nash equilibria in environmental games</title><source>RePEc</source><source>Access via ScienceDirect (Elsevier)</source><creator>Krawczyk, Jacek B.</creator><creatorcontrib>Krawczyk, Jacek B.</creatorcontrib><description>The focus of this paper is on how to model and solve an environmental compliance problem using [Rosen, J.B., 1965. Existence and uniqueness of equilibrium points for concave n-person games. Econometrica 33 (3), 520–534] seminal idea of coupled constraint equilibrium. First, Rosen's results about the existence and uniqueness of a Nash normalised equilibrium for coupled constraint games are explained. These results are then combined with a numerical approach to game solutions based on the Nikaido–Isoda function. A river basin pollution game, which is a model for a common nonpoint source pollution problem, is solved numerically using this approach. In the game, the agents face a joint constraint on the total pollution, which defines a coupled constraint set in the combined strategy space. This makes the game special in terms of the strategy spaces. Unlike for standard games where they are defined separately for each player, here we have a joint constraint on the combined strategy space of all players. Hence, the game needs coupled constraint equilibrium as the solution concept. Static and (open-loop) dynamic equilibria are computed for the basin problem under the discussed equilibrium concept. All equilibria are instructive for the legislator, in that they contain information on how to choose the “optimal” charges, under which agents obey the constraints.</description><identifier>ISSN: 0928-7655</identifier><identifier>EISSN: 1873-0221</identifier><identifier>DOI: 10.1016/j.reseneeco.2004.08.001</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithms ; Applied sciences ; Compliance ; Compliance problem ; Computational economics ; Economics ; Equilibrium ; Exact sciences and technology ; Game theory ; Games ; Global environmental pollution ; Nikado–Isoda function ; Nonpoint source pollution ; Open-loop equilibrium ; Operational research and scientific management ; Operational research. Management science ; Pollution ; Relaxation algorithm ; Rosen coupled constraint games ; Studies</subject><ispartof>Resource and energy economics, 2005-06, Vol.27 (2), p.157-181</ispartof><rights>2004 Elsevier B.V.</rights><rights>2005 INIST-CNRS</rights><rights>Copyright Elsevier Sequoia S.A. Jun 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c567t-5ec689162e3cdde2d915a5381ae13c4923484a8b464cb6b01697ab0b49a3c1b93</citedby><cites>FETCH-LOGICAL-c567t-5ec689162e3cdde2d915a5381ae13c4923484a8b464cb6b01697ab0b49a3c1b93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.reseneeco.2004.08.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,4008,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16767309$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/eeeresene/v_3a27_3ay_3a2005_3ai_3a2_3ap_3a157-181.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Krawczyk, Jacek B.</creatorcontrib><title>Coupled constraint Nash equilibria in environmental games</title><title>Resource and energy economics</title><description>The focus of this paper is on how to model and solve an environmental compliance problem using [Rosen, J.B., 1965. Existence and uniqueness of equilibrium points for concave n-person games. Econometrica 33 (3), 520–534] seminal idea of coupled constraint equilibrium. First, Rosen's results about the existence and uniqueness of a Nash normalised equilibrium for coupled constraint games are explained. These results are then combined with a numerical approach to game solutions based on the Nikaido–Isoda function. A river basin pollution game, which is a model for a common nonpoint source pollution problem, is solved numerically using this approach. In the game, the agents face a joint constraint on the total pollution, which defines a coupled constraint set in the combined strategy space. This makes the game special in terms of the strategy spaces. Unlike for standard games where they are defined separately for each player, here we have a joint constraint on the combined strategy space of all players. Hence, the game needs coupled constraint equilibrium as the solution concept. Static and (open-loop) dynamic equilibria are computed for the basin problem under the discussed equilibrium concept. All equilibria are instructive for the legislator, in that they contain information on how to choose the “optimal” charges, under which agents obey the constraints.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Compliance</subject><subject>Compliance problem</subject><subject>Computational economics</subject><subject>Economics</subject><subject>Equilibrium</subject><subject>Exact sciences and technology</subject><subject>Game theory</subject><subject>Games</subject><subject>Global environmental pollution</subject><subject>Nikado–Isoda function</subject><subject>Nonpoint source pollution</subject><subject>Open-loop equilibrium</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Pollution</subject><subject>Relaxation algorithm</subject><subject>Rosen coupled constraint games</subject><subject>Studies</subject><issn>0928-7655</issn><issn>1873-0221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqFkE9r3DAQxUVJoZu0n6GmkKOdkfX_GJYkbVnSS3sWsjzbaPHKjuRdyLevjENy7GE0c3hv5ulHyFcKDQUqbw5NwowR0Y9NC8Ab0A0A_UA2VCtWQ9vSC7IB0-paSSE-kcucDwAgAMyGmO14mgbsKz_GPCcX4lw9uvxU4fMpDKFLwVUhVhjPIY3xiHF2Q_XXHTF_Jh_3bsj45bVfkT_3d7-33-vdr4cf29td7YVUcy3QS22obJH5vse2N1Q4wTR1SJnnpmVcc6c7LrnvZFd-ZJTroOPGMU87w67It3XvlMbnE-bZHsZTiuWkpUZzabhYRGoV-TTmnHBvpxSOLr1YCnbBZA_2DZNdMFnQtmAqzp-rM-GE_s2GiKveni1zrSrPyzIUbqWFZSw1laJCWaqpfZqPZdn1a1aXvRv2yUUf8nsWqaRisMS9XXVYwJ0DJpt9wOixDwn9bPsx_Df4P1xPmpU</recordid><startdate>20050601</startdate><enddate>20050601</enddate><creator>Krawczyk, Jacek B.</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TA</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>SOI</scope></search><sort><creationdate>20050601</creationdate><title>Coupled constraint Nash equilibria in environmental games</title><author>Krawczyk, Jacek B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c567t-5ec689162e3cdde2d915a5381ae13c4923484a8b464cb6b01697ab0b49a3c1b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Compliance</topic><topic>Compliance problem</topic><topic>Computational economics</topic><topic>Economics</topic><topic>Equilibrium</topic><topic>Exact sciences and technology</topic><topic>Game theory</topic><topic>Games</topic><topic>Global environmental pollution</topic><topic>Nikado–Isoda function</topic><topic>Nonpoint source pollution</topic><topic>Open-loop equilibrium</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Pollution</topic><topic>Relaxation algorithm</topic><topic>Rosen coupled constraint games</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krawczyk, Jacek B.</creatorcontrib><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Materials Business File</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Environment Abstracts</collection><jtitle>Resource and energy economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krawczyk, Jacek B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coupled constraint Nash equilibria in environmental games</atitle><jtitle>Resource and energy economics</jtitle><date>2005-06-01</date><risdate>2005</risdate><volume>27</volume><issue>2</issue><spage>157</spage><epage>181</epage><pages>157-181</pages><issn>0928-7655</issn><eissn>1873-0221</eissn><abstract>The focus of this paper is on how to model and solve an environmental compliance problem using [Rosen, J.B., 1965. Existence and uniqueness of equilibrium points for concave n-person games. Econometrica 33 (3), 520–534] seminal idea of coupled constraint equilibrium. First, Rosen's results about the existence and uniqueness of a Nash normalised equilibrium for coupled constraint games are explained. These results are then combined with a numerical approach to game solutions based on the Nikaido–Isoda function. A river basin pollution game, which is a model for a common nonpoint source pollution problem, is solved numerically using this approach. In the game, the agents face a joint constraint on the total pollution, which defines a coupled constraint set in the combined strategy space. This makes the game special in terms of the strategy spaces. Unlike for standard games where they are defined separately for each player, here we have a joint constraint on the combined strategy space of all players. Hence, the game needs coupled constraint equilibrium as the solution concept. Static and (open-loop) dynamic equilibria are computed for the basin problem under the discussed equilibrium concept. All equilibria are instructive for the legislator, in that they contain information on how to choose the “optimal” charges, under which agents obey the constraints.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.reseneeco.2004.08.001</doi><tpages>25</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0928-7655
ispartof Resource and energy economics, 2005-06, Vol.27 (2), p.157-181
issn 0928-7655
1873-0221
language eng
recordid cdi_proquest_journals_198469459
source RePEc; Access via ScienceDirect (Elsevier)
subjects Algorithms
Applied sciences
Compliance
Compliance problem
Computational economics
Economics
Equilibrium
Exact sciences and technology
Game theory
Games
Global environmental pollution
Nikado–Isoda function
Nonpoint source pollution
Open-loop equilibrium
Operational research and scientific management
Operational research. Management science
Pollution
Relaxation algorithm
Rosen coupled constraint games
Studies
title Coupled constraint Nash equilibria in environmental games
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T21%3A01%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coupled%20constraint%20Nash%20equilibria%20in%20environmental%20games&rft.jtitle=Resource%20and%20energy%20economics&rft.au=Krawczyk,%20Jacek%20B.&rft.date=2005-06-01&rft.volume=27&rft.issue=2&rft.spage=157&rft.epage=181&rft.pages=157-181&rft.issn=0928-7655&rft.eissn=1873-0221&rft_id=info:doi/10.1016/j.reseneeco.2004.08.001&rft_dat=%3Cproquest_cross%3E833056791%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=198469459&rft_id=info:pmid/&rft_els_id=S0928765504000661&rfr_iscdi=true