Coupled constraint Nash equilibria in environmental games
The focus of this paper is on how to model and solve an environmental compliance problem using [Rosen, J.B., 1965. Existence and uniqueness of equilibrium points for concave n-person games. Econometrica 33 (3), 520–534] seminal idea of coupled constraint equilibrium. First, Rosen's results abou...
Gespeichert in:
Veröffentlicht in: | Resource and energy economics 2005-06, Vol.27 (2), p.157-181 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 181 |
---|---|
container_issue | 2 |
container_start_page | 157 |
container_title | Resource and energy economics |
container_volume | 27 |
creator | Krawczyk, Jacek B. |
description | The focus of this paper is on how to model and solve an environmental compliance problem using [Rosen, J.B., 1965. Existence and uniqueness of equilibrium points for concave n-person games. Econometrica 33 (3), 520–534] seminal idea of
coupled constraint equilibrium. First, Rosen's results about the existence and uniqueness of a Nash normalised equilibrium for coupled constraint games are explained. These results are then combined with a numerical approach to game solutions based on the Nikaido–Isoda function. A river basin pollution game, which is a model for a common nonpoint source pollution problem, is solved numerically using this approach. In the game, the agents face a joint constraint on the total pollution, which defines a coupled constraint set in the combined strategy space. This makes the game special in terms of the strategy spaces. Unlike for standard games where they are defined separately for each player, here we have a joint constraint on the combined strategy space of all players. Hence, the game needs coupled constraint equilibrium as the solution concept. Static and (open-loop) dynamic equilibria are computed for the basin problem under the discussed equilibrium concept. All equilibria are instructive for the legislator, in that they contain information on how to choose the “optimal” charges, under which agents obey the constraints. |
doi_str_mv | 10.1016/j.reseneeco.2004.08.001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_198469459</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0928765504000661</els_id><sourcerecordid>833056791</sourcerecordid><originalsourceid>FETCH-LOGICAL-c567t-5ec689162e3cdde2d915a5381ae13c4923484a8b464cb6b01697ab0b49a3c1b93</originalsourceid><addsrcrecordid>eNqFkE9r3DAQxUVJoZu0n6GmkKOdkfX_GJYkbVnSS3sWsjzbaPHKjuRdyLevjENy7GE0c3hv5ulHyFcKDQUqbw5NwowR0Y9NC8Ab0A0A_UA2VCtWQ9vSC7IB0-paSSE-kcucDwAgAMyGmO14mgbsKz_GPCcX4lw9uvxU4fMpDKFLwVUhVhjPIY3xiHF2Q_XXHTF_Jh_3bsj45bVfkT_3d7-33-vdr4cf29td7YVUcy3QS22obJH5vse2N1Q4wTR1SJnnpmVcc6c7LrnvZFd-ZJTroOPGMU87w67It3XvlMbnE-bZHsZTiuWkpUZzabhYRGoV-TTmnHBvpxSOLr1YCnbBZA_2DZNdMFnQtmAqzp-rM-GE_s2GiKveni1zrSrPyzIUbqWFZSw1laJCWaqpfZqPZdn1a1aXvRv2yUUf8nsWqaRisMS9XXVYwJ0DJpt9wOixDwn9bPsx_Df4P1xPmpU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>198469459</pqid></control><display><type>article</type><title>Coupled constraint Nash equilibria in environmental games</title><source>RePEc</source><source>Access via ScienceDirect (Elsevier)</source><creator>Krawczyk, Jacek B.</creator><creatorcontrib>Krawczyk, Jacek B.</creatorcontrib><description>The focus of this paper is on how to model and solve an environmental compliance problem using [Rosen, J.B., 1965. Existence and uniqueness of equilibrium points for concave n-person games. Econometrica 33 (3), 520–534] seminal idea of
coupled constraint equilibrium. First, Rosen's results about the existence and uniqueness of a Nash normalised equilibrium for coupled constraint games are explained. These results are then combined with a numerical approach to game solutions based on the Nikaido–Isoda function. A river basin pollution game, which is a model for a common nonpoint source pollution problem, is solved numerically using this approach. In the game, the agents face a joint constraint on the total pollution, which defines a coupled constraint set in the combined strategy space. This makes the game special in terms of the strategy spaces. Unlike for standard games where they are defined separately for each player, here we have a joint constraint on the combined strategy space of all players. Hence, the game needs coupled constraint equilibrium as the solution concept. Static and (open-loop) dynamic equilibria are computed for the basin problem under the discussed equilibrium concept. All equilibria are instructive for the legislator, in that they contain information on how to choose the “optimal” charges, under which agents obey the constraints.</description><identifier>ISSN: 0928-7655</identifier><identifier>EISSN: 1873-0221</identifier><identifier>DOI: 10.1016/j.reseneeco.2004.08.001</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithms ; Applied sciences ; Compliance ; Compliance problem ; Computational economics ; Economics ; Equilibrium ; Exact sciences and technology ; Game theory ; Games ; Global environmental pollution ; Nikado–Isoda function ; Nonpoint source pollution ; Open-loop equilibrium ; Operational research and scientific management ; Operational research. Management science ; Pollution ; Relaxation algorithm ; Rosen coupled constraint games ; Studies</subject><ispartof>Resource and energy economics, 2005-06, Vol.27 (2), p.157-181</ispartof><rights>2004 Elsevier B.V.</rights><rights>2005 INIST-CNRS</rights><rights>Copyright Elsevier Sequoia S.A. Jun 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c567t-5ec689162e3cdde2d915a5381ae13c4923484a8b464cb6b01697ab0b49a3c1b93</citedby><cites>FETCH-LOGICAL-c567t-5ec689162e3cdde2d915a5381ae13c4923484a8b464cb6b01697ab0b49a3c1b93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.reseneeco.2004.08.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,4008,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16767309$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/eeeresene/v_3a27_3ay_3a2005_3ai_3a2_3ap_3a157-181.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Krawczyk, Jacek B.</creatorcontrib><title>Coupled constraint Nash equilibria in environmental games</title><title>Resource and energy economics</title><description>The focus of this paper is on how to model and solve an environmental compliance problem using [Rosen, J.B., 1965. Existence and uniqueness of equilibrium points for concave n-person games. Econometrica 33 (3), 520–534] seminal idea of
coupled constraint equilibrium. First, Rosen's results about the existence and uniqueness of a Nash normalised equilibrium for coupled constraint games are explained. These results are then combined with a numerical approach to game solutions based on the Nikaido–Isoda function. A river basin pollution game, which is a model for a common nonpoint source pollution problem, is solved numerically using this approach. In the game, the agents face a joint constraint on the total pollution, which defines a coupled constraint set in the combined strategy space. This makes the game special in terms of the strategy spaces. Unlike for standard games where they are defined separately for each player, here we have a joint constraint on the combined strategy space of all players. Hence, the game needs coupled constraint equilibrium as the solution concept. Static and (open-loop) dynamic equilibria are computed for the basin problem under the discussed equilibrium concept. All equilibria are instructive for the legislator, in that they contain information on how to choose the “optimal” charges, under which agents obey the constraints.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Compliance</subject><subject>Compliance problem</subject><subject>Computational economics</subject><subject>Economics</subject><subject>Equilibrium</subject><subject>Exact sciences and technology</subject><subject>Game theory</subject><subject>Games</subject><subject>Global environmental pollution</subject><subject>Nikado–Isoda function</subject><subject>Nonpoint source pollution</subject><subject>Open-loop equilibrium</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Pollution</subject><subject>Relaxation algorithm</subject><subject>Rosen coupled constraint games</subject><subject>Studies</subject><issn>0928-7655</issn><issn>1873-0221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqFkE9r3DAQxUVJoZu0n6GmkKOdkfX_GJYkbVnSS3sWsjzbaPHKjuRdyLevjENy7GE0c3hv5ulHyFcKDQUqbw5NwowR0Y9NC8Ab0A0A_UA2VCtWQ9vSC7IB0-paSSE-kcucDwAgAMyGmO14mgbsKz_GPCcX4lw9uvxU4fMpDKFLwVUhVhjPIY3xiHF2Q_XXHTF_Jh_3bsj45bVfkT_3d7-33-vdr4cf29td7YVUcy3QS22obJH5vse2N1Q4wTR1SJnnpmVcc6c7LrnvZFd-ZJTroOPGMU87w67It3XvlMbnE-bZHsZTiuWkpUZzabhYRGoV-TTmnHBvpxSOLr1YCnbBZA_2DZNdMFnQtmAqzp-rM-GE_s2GiKveni1zrSrPyzIUbqWFZSw1laJCWaqpfZqPZdn1a1aXvRv2yUUf8nsWqaRisMS9XXVYwJ0DJpt9wOixDwn9bPsx_Df4P1xPmpU</recordid><startdate>20050601</startdate><enddate>20050601</enddate><creator>Krawczyk, Jacek B.</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TA</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>SOI</scope></search><sort><creationdate>20050601</creationdate><title>Coupled constraint Nash equilibria in environmental games</title><author>Krawczyk, Jacek B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c567t-5ec689162e3cdde2d915a5381ae13c4923484a8b464cb6b01697ab0b49a3c1b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Compliance</topic><topic>Compliance problem</topic><topic>Computational economics</topic><topic>Economics</topic><topic>Equilibrium</topic><topic>Exact sciences and technology</topic><topic>Game theory</topic><topic>Games</topic><topic>Global environmental pollution</topic><topic>Nikado–Isoda function</topic><topic>Nonpoint source pollution</topic><topic>Open-loop equilibrium</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Pollution</topic><topic>Relaxation algorithm</topic><topic>Rosen coupled constraint games</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krawczyk, Jacek B.</creatorcontrib><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Materials Business File</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Environment Abstracts</collection><jtitle>Resource and energy economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krawczyk, Jacek B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coupled constraint Nash equilibria in environmental games</atitle><jtitle>Resource and energy economics</jtitle><date>2005-06-01</date><risdate>2005</risdate><volume>27</volume><issue>2</issue><spage>157</spage><epage>181</epage><pages>157-181</pages><issn>0928-7655</issn><eissn>1873-0221</eissn><abstract>The focus of this paper is on how to model and solve an environmental compliance problem using [Rosen, J.B., 1965. Existence and uniqueness of equilibrium points for concave n-person games. Econometrica 33 (3), 520–534] seminal idea of
coupled constraint equilibrium. First, Rosen's results about the existence and uniqueness of a Nash normalised equilibrium for coupled constraint games are explained. These results are then combined with a numerical approach to game solutions based on the Nikaido–Isoda function. A river basin pollution game, which is a model for a common nonpoint source pollution problem, is solved numerically using this approach. In the game, the agents face a joint constraint on the total pollution, which defines a coupled constraint set in the combined strategy space. This makes the game special in terms of the strategy spaces. Unlike for standard games where they are defined separately for each player, here we have a joint constraint on the combined strategy space of all players. Hence, the game needs coupled constraint equilibrium as the solution concept. Static and (open-loop) dynamic equilibria are computed for the basin problem under the discussed equilibrium concept. All equilibria are instructive for the legislator, in that they contain information on how to choose the “optimal” charges, under which agents obey the constraints.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.reseneeco.2004.08.001</doi><tpages>25</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0928-7655 |
ispartof | Resource and energy economics, 2005-06, Vol.27 (2), p.157-181 |
issn | 0928-7655 1873-0221 |
language | eng |
recordid | cdi_proquest_journals_198469459 |
source | RePEc; Access via ScienceDirect (Elsevier) |
subjects | Algorithms Applied sciences Compliance Compliance problem Computational economics Economics Equilibrium Exact sciences and technology Game theory Games Global environmental pollution Nikado–Isoda function Nonpoint source pollution Open-loop equilibrium Operational research and scientific management Operational research. Management science Pollution Relaxation algorithm Rosen coupled constraint games Studies |
title | Coupled constraint Nash equilibria in environmental games |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T21%3A01%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coupled%20constraint%20Nash%20equilibria%20in%20environmental%20games&rft.jtitle=Resource%20and%20energy%20economics&rft.au=Krawczyk,%20Jacek%20B.&rft.date=2005-06-01&rft.volume=27&rft.issue=2&rft.spage=157&rft.epage=181&rft.pages=157-181&rft.issn=0928-7655&rft.eissn=1873-0221&rft_id=info:doi/10.1016/j.reseneeco.2004.08.001&rft_dat=%3Cproquest_cross%3E833056791%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=198469459&rft_id=info:pmid/&rft_els_id=S0928765504000661&rfr_iscdi=true |