In-situ polymerization and characteristic properties of the waterborne poly(siloxanes-urethane)s nanocomposites containing graphene
In this study, graphene oxide (GO) was chemically reduced into reduced GO (RGO) by using hydrazine and a series of waterborne RGO/poly(siloxane-urethane) (SWPU) nanocomposites with various amounts of RGO were synthesized through in-situ polymerization. Siloxane units were incorporated into the nanoc...
Gespeichert in:
Veröffentlicht in: | Journal of polymer research 2018, Vol.25 (1), p.1-15, Article 33 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | Journal of polymer research |
container_volume | 25 |
creator | Suen, Maw-Cherng Gu, Jia-Hao Hwang, Jiunn-Jer Wu, Cheng-Lung Lee, Hsun-Tsing |
description | In this study, graphene oxide (GO) was chemically reduced into reduced GO (RGO) by using hydrazine and a series of waterborne RGO/poly(siloxane-urethane) (SWPU) nanocomposites with various amounts of RGO were synthesized through in-situ polymerization. Siloxane units were incorporated into the nanocomposites to cause the cross-linking reaction in polyurethane (PU) units. Changes in the structure of the nanocomposites were examined through X-ray diffractometry (XRD). The results revealed two broad peaks at 2θ = 10° and 20°, indicating the existence of short-range ordering in the hard domains. The relative intensities of the two XRD peaks varied with the RGO content orderly. Additionally, thermogravimetric analysis, dynamic mechanical analysis, tensile testing, hardness measurement, and thermal conductivity analysis were conducted to investigate the thermal and mechanical properties of the nanocomposites. The results suggest that the thermal decomposition temperature (Td), dynamic glass transition temperature (Tgd), tensile strength, and Young’s modulus were at their optimal levels with 0.3 wt% of RGO, and an RGO amount greater than 0.3 wt% weakened the thermal and mechanical properties of the nanocomposites. The surface morphology of the nanocomposites was determined using a scanning electron microscope, atomic-force microscope and contact angle meter. The results suggest that surface roughness and contact angle increased considerably with RGO content. In addition, the electrical and thermal conductivities of the nanocomposites increased with increasing RGO content. |
doi_str_mv | 10.1007/s10965-017-1424-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1984362884</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1984362884</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-7a568e1b14c06193f68731e77a399992e9b78810fff307ce3f46338a962a84c83</originalsourceid><addsrcrecordid>eNp1kD1PAzEMhiMEEqXwA9giscAQSC53SW5EFR-VKrHAHKXB16ZqkyPJCdqVP06gDCx4sC3bjy2_CJ0zes0olTeJ0VY0hDJJWF3VZHeARqyRFVEtbw5LTquKtFLQY3SS0orSppFCjdDn1JPk8oD7sN5uILqdyS54bPwrtksTjc2lmLKzuI-hh5gdJBw6nJeA301pzkP08INfJrcOH8ZDIkOEvCzZVcLe-GDDpg_lTEFt8Nk47_wCL6Lpl-DhFB11Zp3g7DeO0cv93fPkkcyeHqaT2xmxnIlMpGmEAjZntaWCtbwTSnIGUhreFqugnUulGO26jlNpgXe14FyZVlRG1VbxMbrY7y2fvA2Qsl6FIfpyUrNW1VxUqvgxYvspG0NKETrdR7cxcasZ1d9a673Wumitv7XWu8JUeyaVWb-A-Gfzv9AXGzSFdg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1984362884</pqid></control><display><type>article</type><title>In-situ polymerization and characteristic properties of the waterborne poly(siloxanes-urethane)s nanocomposites containing graphene</title><source>SpringerNature Journals</source><creator>Suen, Maw-Cherng ; Gu, Jia-Hao ; Hwang, Jiunn-Jer ; Wu, Cheng-Lung ; Lee, Hsun-Tsing</creator><creatorcontrib>Suen, Maw-Cherng ; Gu, Jia-Hao ; Hwang, Jiunn-Jer ; Wu, Cheng-Lung ; Lee, Hsun-Tsing</creatorcontrib><description>In this study, graphene oxide (GO) was chemically reduced into reduced GO (RGO) by using hydrazine and a series of waterborne RGO/poly(siloxane-urethane) (SWPU) nanocomposites with various amounts of RGO were synthesized through in-situ polymerization. Siloxane units were incorporated into the nanocomposites to cause the cross-linking reaction in polyurethane (PU) units. Changes in the structure of the nanocomposites were examined through X-ray diffractometry (XRD). The results revealed two broad peaks at 2θ = 10° and 20°, indicating the existence of short-range ordering in the hard domains. The relative intensities of the two XRD peaks varied with the RGO content orderly. Additionally, thermogravimetric analysis, dynamic mechanical analysis, tensile testing, hardness measurement, and thermal conductivity analysis were conducted to investigate the thermal and mechanical properties of the nanocomposites. The results suggest that the thermal decomposition temperature (Td), dynamic glass transition temperature (Tgd), tensile strength, and Young’s modulus were at their optimal levels with 0.3 wt% of RGO, and an RGO amount greater than 0.3 wt% weakened the thermal and mechanical properties of the nanocomposites. The surface morphology of the nanocomposites was determined using a scanning electron microscope, atomic-force microscope and contact angle meter. The results suggest that surface roughness and contact angle increased considerably with RGO content. In addition, the electrical and thermal conductivities of the nanocomposites increased with increasing RGO content.</description><identifier>ISSN: 1022-9760</identifier><identifier>EISSN: 1572-8935</identifier><identifier>DOI: 10.1007/s10965-017-1424-z</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Atomic force microscopy ; Atomic structure ; Characterization and Evaluation of Materials ; Chemical synthesis ; Chemistry ; Chemistry and Materials Science ; Contact angle ; Crosslinking ; Dynamic mechanical analysis ; Electric contacts ; Electrical resistivity ; Glass transition temperature ; Graphene ; Hardness measurement ; Industrial Chemistry/Chemical Engineering ; Mechanical properties ; Modulus of elasticity ; Nanocomposites ; Original Paper ; Polymer Sciences ; Polymerization ; Polyurethane resins ; Siloxanes ; Surface roughness ; Thermal conductivity ; Thermal decomposition ; Thermodynamic properties ; Thermogravimetric analysis</subject><ispartof>Journal of polymer research, 2018, Vol.25 (1), p.1-15, Article 33</ispartof><rights>Springer Science+Business Media B.V., part of Springer Nature 2018</rights><rights>Journal of Polymer Research is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-7a568e1b14c06193f68731e77a399992e9b78810fff307ce3f46338a962a84c83</citedby><cites>FETCH-LOGICAL-c316t-7a568e1b14c06193f68731e77a399992e9b78810fff307ce3f46338a962a84c83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10965-017-1424-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10965-017-1424-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Suen, Maw-Cherng</creatorcontrib><creatorcontrib>Gu, Jia-Hao</creatorcontrib><creatorcontrib>Hwang, Jiunn-Jer</creatorcontrib><creatorcontrib>Wu, Cheng-Lung</creatorcontrib><creatorcontrib>Lee, Hsun-Tsing</creatorcontrib><title>In-situ polymerization and characteristic properties of the waterborne poly(siloxanes-urethane)s nanocomposites containing graphene</title><title>Journal of polymer research</title><addtitle>J Polym Res</addtitle><description>In this study, graphene oxide (GO) was chemically reduced into reduced GO (RGO) by using hydrazine and a series of waterborne RGO/poly(siloxane-urethane) (SWPU) nanocomposites with various amounts of RGO were synthesized through in-situ polymerization. Siloxane units were incorporated into the nanocomposites to cause the cross-linking reaction in polyurethane (PU) units. Changes in the structure of the nanocomposites were examined through X-ray diffractometry (XRD). The results revealed two broad peaks at 2θ = 10° and 20°, indicating the existence of short-range ordering in the hard domains. The relative intensities of the two XRD peaks varied with the RGO content orderly. Additionally, thermogravimetric analysis, dynamic mechanical analysis, tensile testing, hardness measurement, and thermal conductivity analysis were conducted to investigate the thermal and mechanical properties of the nanocomposites. The results suggest that the thermal decomposition temperature (Td), dynamic glass transition temperature (Tgd), tensile strength, and Young’s modulus were at their optimal levels with 0.3 wt% of RGO, and an RGO amount greater than 0.3 wt% weakened the thermal and mechanical properties of the nanocomposites. The surface morphology of the nanocomposites was determined using a scanning electron microscope, atomic-force microscope and contact angle meter. The results suggest that surface roughness and contact angle increased considerably with RGO content. In addition, the electrical and thermal conductivities of the nanocomposites increased with increasing RGO content.</description><subject>Atomic force microscopy</subject><subject>Atomic structure</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical synthesis</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Contact angle</subject><subject>Crosslinking</subject><subject>Dynamic mechanical analysis</subject><subject>Electric contacts</subject><subject>Electrical resistivity</subject><subject>Glass transition temperature</subject><subject>Graphene</subject><subject>Hardness measurement</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Mechanical properties</subject><subject>Modulus of elasticity</subject><subject>Nanocomposites</subject><subject>Original Paper</subject><subject>Polymer Sciences</subject><subject>Polymerization</subject><subject>Polyurethane resins</subject><subject>Siloxanes</subject><subject>Surface roughness</subject><subject>Thermal conductivity</subject><subject>Thermal decomposition</subject><subject>Thermodynamic properties</subject><subject>Thermogravimetric analysis</subject><issn>1022-9760</issn><issn>1572-8935</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kD1PAzEMhiMEEqXwA9giscAQSC53SW5EFR-VKrHAHKXB16ZqkyPJCdqVP06gDCx4sC3bjy2_CJ0zes0olTeJ0VY0hDJJWF3VZHeARqyRFVEtbw5LTquKtFLQY3SS0orSppFCjdDn1JPk8oD7sN5uILqdyS54bPwrtksTjc2lmLKzuI-hh5gdJBw6nJeA301pzkP08INfJrcOH8ZDIkOEvCzZVcLe-GDDpg_lTEFt8Nk47_wCL6Lpl-DhFB11Zp3g7DeO0cv93fPkkcyeHqaT2xmxnIlMpGmEAjZntaWCtbwTSnIGUhreFqugnUulGO26jlNpgXe14FyZVlRG1VbxMbrY7y2fvA2Qsl6FIfpyUrNW1VxUqvgxYvspG0NKETrdR7cxcasZ1d9a673Wumitv7XWu8JUeyaVWb-A-Gfzv9AXGzSFdg</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Suen, Maw-Cherng</creator><creator>Gu, Jia-Hao</creator><creator>Hwang, Jiunn-Jer</creator><creator>Wu, Cheng-Lung</creator><creator>Lee, Hsun-Tsing</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>2018</creationdate><title>In-situ polymerization and characteristic properties of the waterborne poly(siloxanes-urethane)s nanocomposites containing graphene</title><author>Suen, Maw-Cherng ; Gu, Jia-Hao ; Hwang, Jiunn-Jer ; Wu, Cheng-Lung ; Lee, Hsun-Tsing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-7a568e1b14c06193f68731e77a399992e9b78810fff307ce3f46338a962a84c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Atomic force microscopy</topic><topic>Atomic structure</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical synthesis</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Contact angle</topic><topic>Crosslinking</topic><topic>Dynamic mechanical analysis</topic><topic>Electric contacts</topic><topic>Electrical resistivity</topic><topic>Glass transition temperature</topic><topic>Graphene</topic><topic>Hardness measurement</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Mechanical properties</topic><topic>Modulus of elasticity</topic><topic>Nanocomposites</topic><topic>Original Paper</topic><topic>Polymer Sciences</topic><topic>Polymerization</topic><topic>Polyurethane resins</topic><topic>Siloxanes</topic><topic>Surface roughness</topic><topic>Thermal conductivity</topic><topic>Thermal decomposition</topic><topic>Thermodynamic properties</topic><topic>Thermogravimetric analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Suen, Maw-Cherng</creatorcontrib><creatorcontrib>Gu, Jia-Hao</creatorcontrib><creatorcontrib>Hwang, Jiunn-Jer</creatorcontrib><creatorcontrib>Wu, Cheng-Lung</creatorcontrib><creatorcontrib>Lee, Hsun-Tsing</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Journal of polymer research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Suen, Maw-Cherng</au><au>Gu, Jia-Hao</au><au>Hwang, Jiunn-Jer</au><au>Wu, Cheng-Lung</au><au>Lee, Hsun-Tsing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In-situ polymerization and characteristic properties of the waterborne poly(siloxanes-urethane)s nanocomposites containing graphene</atitle><jtitle>Journal of polymer research</jtitle><stitle>J Polym Res</stitle><date>2018</date><risdate>2018</risdate><volume>25</volume><issue>1</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><artnum>33</artnum><issn>1022-9760</issn><eissn>1572-8935</eissn><abstract>In this study, graphene oxide (GO) was chemically reduced into reduced GO (RGO) by using hydrazine and a series of waterborne RGO/poly(siloxane-urethane) (SWPU) nanocomposites with various amounts of RGO were synthesized through in-situ polymerization. Siloxane units were incorporated into the nanocomposites to cause the cross-linking reaction in polyurethane (PU) units. Changes in the structure of the nanocomposites were examined through X-ray diffractometry (XRD). The results revealed two broad peaks at 2θ = 10° and 20°, indicating the existence of short-range ordering in the hard domains. The relative intensities of the two XRD peaks varied with the RGO content orderly. Additionally, thermogravimetric analysis, dynamic mechanical analysis, tensile testing, hardness measurement, and thermal conductivity analysis were conducted to investigate the thermal and mechanical properties of the nanocomposites. The results suggest that the thermal decomposition temperature (Td), dynamic glass transition temperature (Tgd), tensile strength, and Young’s modulus were at their optimal levels with 0.3 wt% of RGO, and an RGO amount greater than 0.3 wt% weakened the thermal and mechanical properties of the nanocomposites. The surface morphology of the nanocomposites was determined using a scanning electron microscope, atomic-force microscope and contact angle meter. The results suggest that surface roughness and contact angle increased considerably with RGO content. In addition, the electrical and thermal conductivities of the nanocomposites increased with increasing RGO content.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10965-017-1424-z</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1022-9760 |
ispartof | Journal of polymer research, 2018, Vol.25 (1), p.1-15, Article 33 |
issn | 1022-9760 1572-8935 |
language | eng |
recordid | cdi_proquest_journals_1984362884 |
source | SpringerNature Journals |
subjects | Atomic force microscopy Atomic structure Characterization and Evaluation of Materials Chemical synthesis Chemistry Chemistry and Materials Science Contact angle Crosslinking Dynamic mechanical analysis Electric contacts Electrical resistivity Glass transition temperature Graphene Hardness measurement Industrial Chemistry/Chemical Engineering Mechanical properties Modulus of elasticity Nanocomposites Original Paper Polymer Sciences Polymerization Polyurethane resins Siloxanes Surface roughness Thermal conductivity Thermal decomposition Thermodynamic properties Thermogravimetric analysis |
title | In-situ polymerization and characteristic properties of the waterborne poly(siloxanes-urethane)s nanocomposites containing graphene |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T22%3A29%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In-situ%20polymerization%20and%20characteristic%20properties%20of%20the%20waterborne%20poly(siloxanes-urethane)s%20nanocomposites%20containing%20graphene&rft.jtitle=Journal%20of%20polymer%20research&rft.au=Suen,%20Maw-Cherng&rft.date=2018&rft.volume=25&rft.issue=1&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.artnum=33&rft.issn=1022-9760&rft.eissn=1572-8935&rft_id=info:doi/10.1007/s10965-017-1424-z&rft_dat=%3Cproquest_cross%3E1984362884%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1984362884&rft_id=info:pmid/&rfr_iscdi=true |