Seismic attributes optimization and application in reservoir prediction

Petroleum geophysicists recognize that many parameters related to oil and gas reservoirs are predicted using seismic attribute data. However, how best to optimize the seismic attributes, predict the character of thin sandstone reservoirs, and enhance the reservoir description accuracy is an importan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied geophysics 2006-12, Vol.3 (4), p.243-247
Hauptverfasser: Gao, Jun, Wang, Jianmin, Yun, Meihou, Huang, Baoshun, Zhang, Guocai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 247
container_issue 4
container_start_page 243
container_title Applied geophysics
container_volume 3
creator Gao, Jun
Wang, Jianmin
Yun, Meihou
Huang, Baoshun
Zhang, Guocai
description Petroleum geophysicists recognize that many parameters related to oil and gas reservoirs are predicted using seismic attribute data. However, how best to optimize the seismic attributes, predict the character of thin sandstone reservoirs, and enhance the reservoir description accuracy is an important goal for geologists and geophysicists. Based on the theory of main component analysis, we present a new optimization method, called constrained main component analysis. Modeling estimates and real application in an oilfield show that it can enhance reservoir prediction accuracy and has better applicability.
doi_str_mv 10.1007/s11770-006-4007-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_198425735</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>23724374</cqvip_id><sourcerecordid>1938826711</sourcerecordid><originalsourceid>FETCH-LOGICAL-a1675-f9d48a5b1c3033bc59020820501a9769752338dbbd8f6fee8c7b9c53259fbcdc3</originalsourceid><addsrcrecordid>eNpFkM1KAzEUhYMoWKsP4G5wH83PZJIspWgrFFyo65BkkpraTqbJjGCf3pQRXN17LodzDx8AtxjdY4T4Q8aYcwQRamBdNDyegRmWkkLUMHFe9oYTyCVnl-Aq523xUdLUM7B8cyHvg630MKRgxsHlKvZD2IejHkLsKt21le77XbCTDl2VXHbpO4ZU9cm1wZ7u1-DC6112N39zDj6en94XK7h-Xb4sHtdQlwYMetnWQjODLUWUGsskIkgQxBDWkjelH6FUtMa0wjfeOWG5kZZRwqQ3trV0Du6m3D7Fw-jyoLZxTF15qbAUNWGcsmLCk8mmmHNyXvUp7HX6URipEy414VIFgzrhUsf_YPsZu80hdBtltP3yYecUoZzUlNf0F4ZyaeA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>198425735</pqid></control><display><type>article</type><title>Seismic attributes optimization and application in reservoir prediction</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Gao, Jun ; Wang, Jianmin ; Yun, Meihou ; Huang, Baoshun ; Zhang, Guocai</creator><creatorcontrib>Gao, Jun ; Wang, Jianmin ; Yun, Meihou ; Huang, Baoshun ; Zhang, Guocai</creatorcontrib><description>Petroleum geophysicists recognize that many parameters related to oil and gas reservoirs are predicted using seismic attribute data. However, how best to optimize the seismic attributes, predict the character of thin sandstone reservoirs, and enhance the reservoir description accuracy is an important goal for geologists and geophysicists. Based on the theory of main component analysis, we present a new optimization method, called constrained main component analysis. Modeling estimates and real application in an oilfield show that it can enhance reservoir prediction accuracy and has better applicability.</description><identifier>ISSN: 1672-7975</identifier><identifier>EISSN: 1993-0658</identifier><identifier>DOI: 10.1007/s11770-006-4007-z</identifier><language>eng</language><publisher>Dordrecht: Springer Nature B.V</publisher><subject>Geologists ; Geophysics ; Oil and gas fields ; Oil fields ; Oil reservoirs ; Optimization ; Petroleum production ; Sandstone ; 检测方法 ; 预报机制</subject><ispartof>Applied geophysics, 2006-12, Vol.3 (4), p.243-247</ispartof><rights>the Editorial Office of Applied Geophysics 2006</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a1675-f9d48a5b1c3033bc59020820501a9769752338dbbd8f6fee8c7b9c53259fbcdc3</citedby><cites>FETCH-LOGICAL-a1675-f9d48a5b1c3033bc59020820501a9769752338dbbd8f6fee8c7b9c53259fbcdc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/86859X/86859X.jpg</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Gao, Jun</creatorcontrib><creatorcontrib>Wang, Jianmin</creatorcontrib><creatorcontrib>Yun, Meihou</creatorcontrib><creatorcontrib>Huang, Baoshun</creatorcontrib><creatorcontrib>Zhang, Guocai</creatorcontrib><title>Seismic attributes optimization and application in reservoir prediction</title><title>Applied geophysics</title><addtitle>Applied Geophysics</addtitle><description>Petroleum geophysicists recognize that many parameters related to oil and gas reservoirs are predicted using seismic attribute data. However, how best to optimize the seismic attributes, predict the character of thin sandstone reservoirs, and enhance the reservoir description accuracy is an important goal for geologists and geophysicists. Based on the theory of main component analysis, we present a new optimization method, called constrained main component analysis. Modeling estimates and real application in an oilfield show that it can enhance reservoir prediction accuracy and has better applicability.</description><subject>Geologists</subject><subject>Geophysics</subject><subject>Oil and gas fields</subject><subject>Oil fields</subject><subject>Oil reservoirs</subject><subject>Optimization</subject><subject>Petroleum production</subject><subject>Sandstone</subject><subject>检测方法</subject><subject>预报机制</subject><issn>1672-7975</issn><issn>1993-0658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpFkM1KAzEUhYMoWKsP4G5wH83PZJIspWgrFFyo65BkkpraTqbJjGCf3pQRXN17LodzDx8AtxjdY4T4Q8aYcwQRamBdNDyegRmWkkLUMHFe9oYTyCVnl-Aq523xUdLUM7B8cyHvg630MKRgxsHlKvZD2IejHkLsKt21le77XbCTDl2VXHbpO4ZU9cm1wZ7u1-DC6112N39zDj6en94XK7h-Xb4sHtdQlwYMetnWQjODLUWUGsskIkgQxBDWkjelH6FUtMa0wjfeOWG5kZZRwqQ3trV0Du6m3D7Fw-jyoLZxTF15qbAUNWGcsmLCk8mmmHNyXvUp7HX6URipEy414VIFgzrhUsf_YPsZu80hdBtltP3yYecUoZzUlNf0F4ZyaeA</recordid><startdate>20061201</startdate><enddate>20061201</enddate><creator>Gao, Jun</creator><creator>Wang, Jianmin</creator><creator>Yun, Meihou</creator><creator>Huang, Baoshun</creator><creator>Zhang, Guocai</creator><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W94</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20061201</creationdate><title>Seismic attributes optimization and application in reservoir prediction</title><author>Gao, Jun ; Wang, Jianmin ; Yun, Meihou ; Huang, Baoshun ; Zhang, Guocai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a1675-f9d48a5b1c3033bc59020820501a9769752338dbbd8f6fee8c7b9c53259fbcdc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Geologists</topic><topic>Geophysics</topic><topic>Oil and gas fields</topic><topic>Oil fields</topic><topic>Oil reservoirs</topic><topic>Optimization</topic><topic>Petroleum production</topic><topic>Sandstone</topic><topic>检测方法</topic><topic>预报机制</topic><toplevel>online_resources</toplevel><creatorcontrib>Gao, Jun</creatorcontrib><creatorcontrib>Wang, Jianmin</creatorcontrib><creatorcontrib>Yun, Meihou</creatorcontrib><creatorcontrib>Huang, Baoshun</creatorcontrib><creatorcontrib>Zhang, Guocai</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-自然科学</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Applied geophysics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Jun</au><au>Wang, Jianmin</au><au>Yun, Meihou</au><au>Huang, Baoshun</au><au>Zhang, Guocai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Seismic attributes optimization and application in reservoir prediction</atitle><jtitle>Applied geophysics</jtitle><addtitle>Applied Geophysics</addtitle><date>2006-12-01</date><risdate>2006</risdate><volume>3</volume><issue>4</issue><spage>243</spage><epage>247</epage><pages>243-247</pages><issn>1672-7975</issn><eissn>1993-0658</eissn><abstract>Petroleum geophysicists recognize that many parameters related to oil and gas reservoirs are predicted using seismic attribute data. However, how best to optimize the seismic attributes, predict the character of thin sandstone reservoirs, and enhance the reservoir description accuracy is an important goal for geologists and geophysicists. Based on the theory of main component analysis, we present a new optimization method, called constrained main component analysis. Modeling estimates and real application in an oilfield show that it can enhance reservoir prediction accuracy and has better applicability.</abstract><cop>Dordrecht</cop><pub>Springer Nature B.V</pub><doi>10.1007/s11770-006-4007-z</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1672-7975
ispartof Applied geophysics, 2006-12, Vol.3 (4), p.243-247
issn 1672-7975
1993-0658
language eng
recordid cdi_proquest_journals_198425735
source Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings
subjects Geologists
Geophysics
Oil and gas fields
Oil fields
Oil reservoirs
Optimization
Petroleum production
Sandstone
检测方法
预报机制
title Seismic attributes optimization and application in reservoir prediction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T13%3A22%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Seismic%20attributes%20optimization%20and%20application%20in%20reservoir%20prediction&rft.jtitle=Applied%20geophysics&rft.au=Gao,%20Jun&rft.date=2006-12-01&rft.volume=3&rft.issue=4&rft.spage=243&rft.epage=247&rft.pages=243-247&rft.issn=1672-7975&rft.eissn=1993-0658&rft_id=info:doi/10.1007/s11770-006-4007-z&rft_dat=%3Cproquest_cross%3E1938826711%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=198425735&rft_id=info:pmid/&rft_cqvip_id=23724374&rfr_iscdi=true