Seismic attributes optimization and application in reservoir prediction
Petroleum geophysicists recognize that many parameters related to oil and gas reservoirs are predicted using seismic attribute data. However, how best to optimize the seismic attributes, predict the character of thin sandstone reservoirs, and enhance the reservoir description accuracy is an importan...
Gespeichert in:
Veröffentlicht in: | Applied geophysics 2006-12, Vol.3 (4), p.243-247 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 247 |
---|---|
container_issue | 4 |
container_start_page | 243 |
container_title | Applied geophysics |
container_volume | 3 |
creator | Gao, Jun Wang, Jianmin Yun, Meihou Huang, Baoshun Zhang, Guocai |
description | Petroleum geophysicists recognize that many parameters related to oil and gas reservoirs are predicted using seismic attribute data. However, how best to optimize the seismic attributes, predict the character of thin sandstone reservoirs, and enhance the reservoir description accuracy is an important goal for geologists and geophysicists. Based on the theory of main component analysis, we present a new optimization method, called constrained main component analysis. Modeling estimates and real application in an oilfield show that it can enhance reservoir prediction accuracy and has better applicability. |
doi_str_mv | 10.1007/s11770-006-4007-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_198425735</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>23724374</cqvip_id><sourcerecordid>1938826711</sourcerecordid><originalsourceid>FETCH-LOGICAL-a1675-f9d48a5b1c3033bc59020820501a9769752338dbbd8f6fee8c7b9c53259fbcdc3</originalsourceid><addsrcrecordid>eNpFkM1KAzEUhYMoWKsP4G5wH83PZJIspWgrFFyo65BkkpraTqbJjGCf3pQRXN17LodzDx8AtxjdY4T4Q8aYcwQRamBdNDyegRmWkkLUMHFe9oYTyCVnl-Aq523xUdLUM7B8cyHvg630MKRgxsHlKvZD2IejHkLsKt21le77XbCTDl2VXHbpO4ZU9cm1wZ7u1-DC6112N39zDj6en94XK7h-Xb4sHtdQlwYMetnWQjODLUWUGsskIkgQxBDWkjelH6FUtMa0wjfeOWG5kZZRwqQ3trV0Du6m3D7Fw-jyoLZxTF15qbAUNWGcsmLCk8mmmHNyXvUp7HX6URipEy414VIFgzrhUsf_YPsZu80hdBtltP3yYecUoZzUlNf0F4ZyaeA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>198425735</pqid></control><display><type>article</type><title>Seismic attributes optimization and application in reservoir prediction</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Gao, Jun ; Wang, Jianmin ; Yun, Meihou ; Huang, Baoshun ; Zhang, Guocai</creator><creatorcontrib>Gao, Jun ; Wang, Jianmin ; Yun, Meihou ; Huang, Baoshun ; Zhang, Guocai</creatorcontrib><description>Petroleum geophysicists recognize that many parameters related to oil and gas reservoirs are predicted using seismic attribute data. However, how best to optimize the seismic attributes, predict the character of thin sandstone reservoirs, and enhance the reservoir description accuracy is an important goal for geologists and geophysicists. Based on the theory of main component analysis, we present a new optimization method, called constrained main component analysis. Modeling estimates and real application in an oilfield show that it can enhance reservoir prediction accuracy and has better applicability.</description><identifier>ISSN: 1672-7975</identifier><identifier>EISSN: 1993-0658</identifier><identifier>DOI: 10.1007/s11770-006-4007-z</identifier><language>eng</language><publisher>Dordrecht: Springer Nature B.V</publisher><subject>Geologists ; Geophysics ; Oil and gas fields ; Oil fields ; Oil reservoirs ; Optimization ; Petroleum production ; Sandstone ; 检测方法 ; 预报机制</subject><ispartof>Applied geophysics, 2006-12, Vol.3 (4), p.243-247</ispartof><rights>the Editorial Office of Applied Geophysics 2006</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a1675-f9d48a5b1c3033bc59020820501a9769752338dbbd8f6fee8c7b9c53259fbcdc3</citedby><cites>FETCH-LOGICAL-a1675-f9d48a5b1c3033bc59020820501a9769752338dbbd8f6fee8c7b9c53259fbcdc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/86859X/86859X.jpg</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Gao, Jun</creatorcontrib><creatorcontrib>Wang, Jianmin</creatorcontrib><creatorcontrib>Yun, Meihou</creatorcontrib><creatorcontrib>Huang, Baoshun</creatorcontrib><creatorcontrib>Zhang, Guocai</creatorcontrib><title>Seismic attributes optimization and application in reservoir prediction</title><title>Applied geophysics</title><addtitle>Applied Geophysics</addtitle><description>Petroleum geophysicists recognize that many parameters related to oil and gas reservoirs are predicted using seismic attribute data. However, how best to optimize the seismic attributes, predict the character of thin sandstone reservoirs, and enhance the reservoir description accuracy is an important goal for geologists and geophysicists. Based on the theory of main component analysis, we present a new optimization method, called constrained main component analysis. Modeling estimates and real application in an oilfield show that it can enhance reservoir prediction accuracy and has better applicability.</description><subject>Geologists</subject><subject>Geophysics</subject><subject>Oil and gas fields</subject><subject>Oil fields</subject><subject>Oil reservoirs</subject><subject>Optimization</subject><subject>Petroleum production</subject><subject>Sandstone</subject><subject>检测方法</subject><subject>预报机制</subject><issn>1672-7975</issn><issn>1993-0658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpFkM1KAzEUhYMoWKsP4G5wH83PZJIspWgrFFyo65BkkpraTqbJjGCf3pQRXN17LodzDx8AtxjdY4T4Q8aYcwQRamBdNDyegRmWkkLUMHFe9oYTyCVnl-Aq523xUdLUM7B8cyHvg630MKRgxsHlKvZD2IejHkLsKt21le77XbCTDl2VXHbpO4ZU9cm1wZ7u1-DC6112N39zDj6en94XK7h-Xb4sHtdQlwYMetnWQjODLUWUGsskIkgQxBDWkjelH6FUtMa0wjfeOWG5kZZRwqQ3trV0Du6m3D7Fw-jyoLZxTF15qbAUNWGcsmLCk8mmmHNyXvUp7HX6URipEy414VIFgzrhUsf_YPsZu80hdBtltP3yYecUoZzUlNf0F4ZyaeA</recordid><startdate>20061201</startdate><enddate>20061201</enddate><creator>Gao, Jun</creator><creator>Wang, Jianmin</creator><creator>Yun, Meihou</creator><creator>Huang, Baoshun</creator><creator>Zhang, Guocai</creator><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W94</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20061201</creationdate><title>Seismic attributes optimization and application in reservoir prediction</title><author>Gao, Jun ; Wang, Jianmin ; Yun, Meihou ; Huang, Baoshun ; Zhang, Guocai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a1675-f9d48a5b1c3033bc59020820501a9769752338dbbd8f6fee8c7b9c53259fbcdc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Geologists</topic><topic>Geophysics</topic><topic>Oil and gas fields</topic><topic>Oil fields</topic><topic>Oil reservoirs</topic><topic>Optimization</topic><topic>Petroleum production</topic><topic>Sandstone</topic><topic>检测方法</topic><topic>预报机制</topic><toplevel>online_resources</toplevel><creatorcontrib>Gao, Jun</creatorcontrib><creatorcontrib>Wang, Jianmin</creatorcontrib><creatorcontrib>Yun, Meihou</creatorcontrib><creatorcontrib>Huang, Baoshun</creatorcontrib><creatorcontrib>Zhang, Guocai</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-自然科学</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Applied geophysics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Jun</au><au>Wang, Jianmin</au><au>Yun, Meihou</au><au>Huang, Baoshun</au><au>Zhang, Guocai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Seismic attributes optimization and application in reservoir prediction</atitle><jtitle>Applied geophysics</jtitle><addtitle>Applied Geophysics</addtitle><date>2006-12-01</date><risdate>2006</risdate><volume>3</volume><issue>4</issue><spage>243</spage><epage>247</epage><pages>243-247</pages><issn>1672-7975</issn><eissn>1993-0658</eissn><abstract>Petroleum geophysicists recognize that many parameters related to oil and gas reservoirs are predicted using seismic attribute data. However, how best to optimize the seismic attributes, predict the character of thin sandstone reservoirs, and enhance the reservoir description accuracy is an important goal for geologists and geophysicists. Based on the theory of main component analysis, we present a new optimization method, called constrained main component analysis. Modeling estimates and real application in an oilfield show that it can enhance reservoir prediction accuracy and has better applicability.</abstract><cop>Dordrecht</cop><pub>Springer Nature B.V</pub><doi>10.1007/s11770-006-4007-z</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1672-7975 |
ispartof | Applied geophysics, 2006-12, Vol.3 (4), p.243-247 |
issn | 1672-7975 1993-0658 |
language | eng |
recordid | cdi_proquest_journals_198425735 |
source | Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings |
subjects | Geologists Geophysics Oil and gas fields Oil fields Oil reservoirs Optimization Petroleum production Sandstone 检测方法 预报机制 |
title | Seismic attributes optimization and application in reservoir prediction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T13%3A22%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Seismic%20attributes%20optimization%20and%20application%20in%20reservoir%20prediction&rft.jtitle=Applied%20geophysics&rft.au=Gao,%20Jun&rft.date=2006-12-01&rft.volume=3&rft.issue=4&rft.spage=243&rft.epage=247&rft.pages=243-247&rft.issn=1672-7975&rft.eissn=1993-0658&rft_id=info:doi/10.1007/s11770-006-4007-z&rft_dat=%3Cproquest_cross%3E1938826711%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=198425735&rft_id=info:pmid/&rft_cqvip_id=23724374&rfr_iscdi=true |