A theory of ultradeep hydrodesulfurization of diesel in stacked‐bed reactors

Hydrodesulfurization catalysts have two types of active sites for hydrogenation and hydrogenolysis reactions. While hydrogenation sites are more active for desulfurizing refractory sulfur species, they are more susceptible to organonitrogen inhibition than hydrogenolysis sites. In contrast, hydrogen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIChE journal 2018-02, Vol.64 (2), p.595-605
1. Verfasser: Ho, Teh C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 605
container_issue 2
container_start_page 595
container_title AIChE journal
container_volume 64
creator Ho, Teh C.
description Hydrodesulfurization catalysts have two types of active sites for hydrogenation and hydrogenolysis reactions. While hydrogenation sites are more active for desulfurizing refractory sulfur species, they are more susceptible to organonitrogen inhibition than hydrogenolysis sites. In contrast, hydrogenolysis sites are more resistant to organonitrogen inhibition but are less active for desulfurizing refractory sulfur species. This dichotomy is exploited to develop an ultradeep hydrodesulfurization stacked‐bed reactor comprising two catalysts of different characteristics. The performance of such a catalyst system can be superior or inferior to that of either catalyst alone. A mathematical model is constructed to predict the optimum stacking configuration for maximum synergies between the two catalysts. The best configuration provides the precise environment for the catalysts to reach their full potentials, resulting in the smallest reactor and minimum hydrogen consumption. Model predictions are consistent with experimental results. A selectivity‐activity diagram is developed for guiding the development of stacked‐bed catalyst systems. © 2017 American Institute of Chemical Engineers AIChE J, 64: 595–605, 2018
doi_str_mv 10.1002/aic.15969
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1983910446</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1983910446</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3349-38308e2df2bdc764874ddff82653fd0f9bba389f4c824d7a4616fd602d58fbcc3</originalsourceid><addsrcrecordid>eNp10EtOwzAQBmALgUQpLLiBJVYs0voVx15WFY9KFWxgbTl-qC6hLnYiFFYcgTNyElLCltVoRt_MSD8AlxjNMEJkroOZ4VJyeQQmuGRVUUpUHoMJQggXwwCfgrOct0NHKkEm4GEB242LqYfRw65pk7bO7eGmtylal7vGdyl86DbE3UHY4LJrYNjB3Grz4uz351ftLExOmzamfA5OvG6yu_irU_B8e_O0vC_Wj3er5WJdGEqZLKigSDhiPamtqTgTFbPWe0F4Sb1FXta1pkJ6ZgRhttKMY-4tR8SWwtfG0Cm4Gu_uU3zrXG7VNnZpN7xUWAoqMWKMD-p6VCbFnJPzap_Cq069wkgd4lJDXOo3rsHOR_seGtf_D9VitRw3fgDsx215</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1983910446</pqid></control><display><type>article</type><title>A theory of ultradeep hydrodesulfurization of diesel in stacked‐bed reactors</title><source>Access via Wiley Online Library</source><creator>Ho, Teh C.</creator><creatorcontrib>Ho, Teh C.</creatorcontrib><description>Hydrodesulfurization catalysts have two types of active sites for hydrogenation and hydrogenolysis reactions. While hydrogenation sites are more active for desulfurizing refractory sulfur species, they are more susceptible to organonitrogen inhibition than hydrogenolysis sites. In contrast, hydrogenolysis sites are more resistant to organonitrogen inhibition but are less active for desulfurizing refractory sulfur species. This dichotomy is exploited to develop an ultradeep hydrodesulfurization stacked‐bed reactor comprising two catalysts of different characteristics. The performance of such a catalyst system can be superior or inferior to that of either catalyst alone. A mathematical model is constructed to predict the optimum stacking configuration for maximum synergies between the two catalysts. The best configuration provides the precise environment for the catalysts to reach their full potentials, resulting in the smallest reactor and minimum hydrogen consumption. Model predictions are consistent with experimental results. A selectivity‐activity diagram is developed for guiding the development of stacked‐bed catalyst systems. © 2017 American Institute of Chemical Engineers AIChE J, 64: 595–605, 2018</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.15969</identifier><language>eng</language><publisher>New York: American Institute of Chemical Engineers</publisher><subject>Catalysis ; Catalysts ; Configurations ; Desulfurization ; Desulfurizing ; fuels ; hydrocarbon processing ; Hydrodesulfurization ; Hydrogen storage ; Hydrogenation ; Hydrogenolysis ; Inhibition ; mathematical modeling ; Mathematical models ; reactor analysis ; Reactors ; Sulfur</subject><ispartof>AIChE journal, 2018-02, Vol.64 (2), p.595-605</ispartof><rights>2017 American Institute of Chemical Engineers</rights><rights>2018 American Institute of Chemical Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3349-38308e2df2bdc764874ddff82653fd0f9bba389f4c824d7a4616fd602d58fbcc3</citedby><cites>FETCH-LOGICAL-c3349-38308e2df2bdc764874ddff82653fd0f9bba389f4c824d7a4616fd602d58fbcc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faic.15969$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faic.15969$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Ho, Teh C.</creatorcontrib><title>A theory of ultradeep hydrodesulfurization of diesel in stacked‐bed reactors</title><title>AIChE journal</title><description>Hydrodesulfurization catalysts have two types of active sites for hydrogenation and hydrogenolysis reactions. While hydrogenation sites are more active for desulfurizing refractory sulfur species, they are more susceptible to organonitrogen inhibition than hydrogenolysis sites. In contrast, hydrogenolysis sites are more resistant to organonitrogen inhibition but are less active for desulfurizing refractory sulfur species. This dichotomy is exploited to develop an ultradeep hydrodesulfurization stacked‐bed reactor comprising two catalysts of different characteristics. The performance of such a catalyst system can be superior or inferior to that of either catalyst alone. A mathematical model is constructed to predict the optimum stacking configuration for maximum synergies between the two catalysts. The best configuration provides the precise environment for the catalysts to reach their full potentials, resulting in the smallest reactor and minimum hydrogen consumption. Model predictions are consistent with experimental results. A selectivity‐activity diagram is developed for guiding the development of stacked‐bed catalyst systems. © 2017 American Institute of Chemical Engineers AIChE J, 64: 595–605, 2018</description><subject>Catalysis</subject><subject>Catalysts</subject><subject>Configurations</subject><subject>Desulfurization</subject><subject>Desulfurizing</subject><subject>fuels</subject><subject>hydrocarbon processing</subject><subject>Hydrodesulfurization</subject><subject>Hydrogen storage</subject><subject>Hydrogenation</subject><subject>Hydrogenolysis</subject><subject>Inhibition</subject><subject>mathematical modeling</subject><subject>Mathematical models</subject><subject>reactor analysis</subject><subject>Reactors</subject><subject>Sulfur</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp10EtOwzAQBmALgUQpLLiBJVYs0voVx15WFY9KFWxgbTl-qC6hLnYiFFYcgTNyElLCltVoRt_MSD8AlxjNMEJkroOZ4VJyeQQmuGRVUUpUHoMJQggXwwCfgrOct0NHKkEm4GEB242LqYfRw65pk7bO7eGmtylal7vGdyl86DbE3UHY4LJrYNjB3Grz4uz351ftLExOmzamfA5OvG6yu_irU_B8e_O0vC_Wj3er5WJdGEqZLKigSDhiPamtqTgTFbPWe0F4Sb1FXta1pkJ6ZgRhttKMY-4tR8SWwtfG0Cm4Gu_uU3zrXG7VNnZpN7xUWAoqMWKMD-p6VCbFnJPzap_Cq069wkgd4lJDXOo3rsHOR_seGtf_D9VitRw3fgDsx215</recordid><startdate>201802</startdate><enddate>201802</enddate><creator>Ho, Teh C.</creator><general>American Institute of Chemical Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>201802</creationdate><title>A theory of ultradeep hydrodesulfurization of diesel in stacked‐bed reactors</title><author>Ho, Teh C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3349-38308e2df2bdc764874ddff82653fd0f9bba389f4c824d7a4616fd602d58fbcc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Catalysis</topic><topic>Catalysts</topic><topic>Configurations</topic><topic>Desulfurization</topic><topic>Desulfurizing</topic><topic>fuels</topic><topic>hydrocarbon processing</topic><topic>Hydrodesulfurization</topic><topic>Hydrogen storage</topic><topic>Hydrogenation</topic><topic>Hydrogenolysis</topic><topic>Inhibition</topic><topic>mathematical modeling</topic><topic>Mathematical models</topic><topic>reactor analysis</topic><topic>Reactors</topic><topic>Sulfur</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ho, Teh C.</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ho, Teh C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A theory of ultradeep hydrodesulfurization of diesel in stacked‐bed reactors</atitle><jtitle>AIChE journal</jtitle><date>2018-02</date><risdate>2018</risdate><volume>64</volume><issue>2</issue><spage>595</spage><epage>605</epage><pages>595-605</pages><issn>0001-1541</issn><eissn>1547-5905</eissn><abstract>Hydrodesulfurization catalysts have two types of active sites for hydrogenation and hydrogenolysis reactions. While hydrogenation sites are more active for desulfurizing refractory sulfur species, they are more susceptible to organonitrogen inhibition than hydrogenolysis sites. In contrast, hydrogenolysis sites are more resistant to organonitrogen inhibition but are less active for desulfurizing refractory sulfur species. This dichotomy is exploited to develop an ultradeep hydrodesulfurization stacked‐bed reactor comprising two catalysts of different characteristics. The performance of such a catalyst system can be superior or inferior to that of either catalyst alone. A mathematical model is constructed to predict the optimum stacking configuration for maximum synergies between the two catalysts. The best configuration provides the precise environment for the catalysts to reach their full potentials, resulting in the smallest reactor and minimum hydrogen consumption. Model predictions are consistent with experimental results. A selectivity‐activity diagram is developed for guiding the development of stacked‐bed catalyst systems. © 2017 American Institute of Chemical Engineers AIChE J, 64: 595–605, 2018</abstract><cop>New York</cop><pub>American Institute of Chemical Engineers</pub><doi>10.1002/aic.15969</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-1541
ispartof AIChE journal, 2018-02, Vol.64 (2), p.595-605
issn 0001-1541
1547-5905
language eng
recordid cdi_proquest_journals_1983910446
source Access via Wiley Online Library
subjects Catalysis
Catalysts
Configurations
Desulfurization
Desulfurizing
fuels
hydrocarbon processing
Hydrodesulfurization
Hydrogen storage
Hydrogenation
Hydrogenolysis
Inhibition
mathematical modeling
Mathematical models
reactor analysis
Reactors
Sulfur
title A theory of ultradeep hydrodesulfurization of diesel in stacked‐bed reactors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T20%3A20%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20theory%20of%20ultradeep%20hydrodesulfurization%20of%20diesel%20in%20stacked%E2%80%90bed%20reactors&rft.jtitle=AIChE%20journal&rft.au=Ho,%20Teh%20C.&rft.date=2018-02&rft.volume=64&rft.issue=2&rft.spage=595&rft.epage=605&rft.pages=595-605&rft.issn=0001-1541&rft.eissn=1547-5905&rft_id=info:doi/10.1002/aic.15969&rft_dat=%3Cproquest_cross%3E1983910446%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1983910446&rft_id=info:pmid/&rfr_iscdi=true