A theory of ultradeep hydrodesulfurization of diesel in stacked‐bed reactors
Hydrodesulfurization catalysts have two types of active sites for hydrogenation and hydrogenolysis reactions. While hydrogenation sites are more active for desulfurizing refractory sulfur species, they are more susceptible to organonitrogen inhibition than hydrogenolysis sites. In contrast, hydrogen...
Gespeichert in:
Veröffentlicht in: | AIChE journal 2018-02, Vol.64 (2), p.595-605 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 605 |
---|---|
container_issue | 2 |
container_start_page | 595 |
container_title | AIChE journal |
container_volume | 64 |
creator | Ho, Teh C. |
description | Hydrodesulfurization catalysts have two types of active sites for hydrogenation and hydrogenolysis reactions. While hydrogenation sites are more active for desulfurizing refractory sulfur species, they are more susceptible to organonitrogen inhibition than hydrogenolysis sites. In contrast, hydrogenolysis sites are more resistant to organonitrogen inhibition but are less active for desulfurizing refractory sulfur species. This dichotomy is exploited to develop an ultradeep hydrodesulfurization stacked‐bed reactor comprising two catalysts of different characteristics. The performance of such a catalyst system can be superior or inferior to that of either catalyst alone. A mathematical model is constructed to predict the optimum stacking configuration for maximum synergies between the two catalysts. The best configuration provides the precise environment for the catalysts to reach their full potentials, resulting in the smallest reactor and minimum hydrogen consumption. Model predictions are consistent with experimental results. A selectivity‐activity diagram is developed for guiding the development of stacked‐bed catalyst systems. © 2017 American Institute of Chemical Engineers AIChE J, 64: 595–605, 2018 |
doi_str_mv | 10.1002/aic.15969 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1983910446</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1983910446</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3349-38308e2df2bdc764874ddff82653fd0f9bba389f4c824d7a4616fd602d58fbcc3</originalsourceid><addsrcrecordid>eNp10EtOwzAQBmALgUQpLLiBJVYs0voVx15WFY9KFWxgbTl-qC6hLnYiFFYcgTNyElLCltVoRt_MSD8AlxjNMEJkroOZ4VJyeQQmuGRVUUpUHoMJQggXwwCfgrOct0NHKkEm4GEB242LqYfRw65pk7bO7eGmtylal7vGdyl86DbE3UHY4LJrYNjB3Grz4uz351ftLExOmzamfA5OvG6yu_irU_B8e_O0vC_Wj3er5WJdGEqZLKigSDhiPamtqTgTFbPWe0F4Sb1FXta1pkJ6ZgRhttKMY-4tR8SWwtfG0Cm4Gu_uU3zrXG7VNnZpN7xUWAoqMWKMD-p6VCbFnJPzap_Cq069wkgd4lJDXOo3rsHOR_seGtf_D9VitRw3fgDsx215</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1983910446</pqid></control><display><type>article</type><title>A theory of ultradeep hydrodesulfurization of diesel in stacked‐bed reactors</title><source>Access via Wiley Online Library</source><creator>Ho, Teh C.</creator><creatorcontrib>Ho, Teh C.</creatorcontrib><description>Hydrodesulfurization catalysts have two types of active sites for hydrogenation and hydrogenolysis reactions. While hydrogenation sites are more active for desulfurizing refractory sulfur species, they are more susceptible to organonitrogen inhibition than hydrogenolysis sites. In contrast, hydrogenolysis sites are more resistant to organonitrogen inhibition but are less active for desulfurizing refractory sulfur species. This dichotomy is exploited to develop an ultradeep hydrodesulfurization stacked‐bed reactor comprising two catalysts of different characteristics. The performance of such a catalyst system can be superior or inferior to that of either catalyst alone. A mathematical model is constructed to predict the optimum stacking configuration for maximum synergies between the two catalysts. The best configuration provides the precise environment for the catalysts to reach their full potentials, resulting in the smallest reactor and minimum hydrogen consumption. Model predictions are consistent with experimental results. A selectivity‐activity diagram is developed for guiding the development of stacked‐bed catalyst systems. © 2017 American Institute of Chemical Engineers AIChE J, 64: 595–605, 2018</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.15969</identifier><language>eng</language><publisher>New York: American Institute of Chemical Engineers</publisher><subject>Catalysis ; Catalysts ; Configurations ; Desulfurization ; Desulfurizing ; fuels ; hydrocarbon processing ; Hydrodesulfurization ; Hydrogen storage ; Hydrogenation ; Hydrogenolysis ; Inhibition ; mathematical modeling ; Mathematical models ; reactor analysis ; Reactors ; Sulfur</subject><ispartof>AIChE journal, 2018-02, Vol.64 (2), p.595-605</ispartof><rights>2017 American Institute of Chemical Engineers</rights><rights>2018 American Institute of Chemical Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3349-38308e2df2bdc764874ddff82653fd0f9bba389f4c824d7a4616fd602d58fbcc3</citedby><cites>FETCH-LOGICAL-c3349-38308e2df2bdc764874ddff82653fd0f9bba389f4c824d7a4616fd602d58fbcc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faic.15969$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faic.15969$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Ho, Teh C.</creatorcontrib><title>A theory of ultradeep hydrodesulfurization of diesel in stacked‐bed reactors</title><title>AIChE journal</title><description>Hydrodesulfurization catalysts have two types of active sites for hydrogenation and hydrogenolysis reactions. While hydrogenation sites are more active for desulfurizing refractory sulfur species, they are more susceptible to organonitrogen inhibition than hydrogenolysis sites. In contrast, hydrogenolysis sites are more resistant to organonitrogen inhibition but are less active for desulfurizing refractory sulfur species. This dichotomy is exploited to develop an ultradeep hydrodesulfurization stacked‐bed reactor comprising two catalysts of different characteristics. The performance of such a catalyst system can be superior or inferior to that of either catalyst alone. A mathematical model is constructed to predict the optimum stacking configuration for maximum synergies between the two catalysts. The best configuration provides the precise environment for the catalysts to reach their full potentials, resulting in the smallest reactor and minimum hydrogen consumption. Model predictions are consistent with experimental results. A selectivity‐activity diagram is developed for guiding the development of stacked‐bed catalyst systems. © 2017 American Institute of Chemical Engineers AIChE J, 64: 595–605, 2018</description><subject>Catalysis</subject><subject>Catalysts</subject><subject>Configurations</subject><subject>Desulfurization</subject><subject>Desulfurizing</subject><subject>fuels</subject><subject>hydrocarbon processing</subject><subject>Hydrodesulfurization</subject><subject>Hydrogen storage</subject><subject>Hydrogenation</subject><subject>Hydrogenolysis</subject><subject>Inhibition</subject><subject>mathematical modeling</subject><subject>Mathematical models</subject><subject>reactor analysis</subject><subject>Reactors</subject><subject>Sulfur</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp10EtOwzAQBmALgUQpLLiBJVYs0voVx15WFY9KFWxgbTl-qC6hLnYiFFYcgTNyElLCltVoRt_MSD8AlxjNMEJkroOZ4VJyeQQmuGRVUUpUHoMJQggXwwCfgrOct0NHKkEm4GEB242LqYfRw65pk7bO7eGmtylal7vGdyl86DbE3UHY4LJrYNjB3Grz4uz351ftLExOmzamfA5OvG6yu_irU_B8e_O0vC_Wj3er5WJdGEqZLKigSDhiPamtqTgTFbPWe0F4Sb1FXta1pkJ6ZgRhttKMY-4tR8SWwtfG0Cm4Gu_uU3zrXG7VNnZpN7xUWAoqMWKMD-p6VCbFnJPzap_Cq069wkgd4lJDXOo3rsHOR_seGtf_D9VitRw3fgDsx215</recordid><startdate>201802</startdate><enddate>201802</enddate><creator>Ho, Teh C.</creator><general>American Institute of Chemical Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>201802</creationdate><title>A theory of ultradeep hydrodesulfurization of diesel in stacked‐bed reactors</title><author>Ho, Teh C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3349-38308e2df2bdc764874ddff82653fd0f9bba389f4c824d7a4616fd602d58fbcc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Catalysis</topic><topic>Catalysts</topic><topic>Configurations</topic><topic>Desulfurization</topic><topic>Desulfurizing</topic><topic>fuels</topic><topic>hydrocarbon processing</topic><topic>Hydrodesulfurization</topic><topic>Hydrogen storage</topic><topic>Hydrogenation</topic><topic>Hydrogenolysis</topic><topic>Inhibition</topic><topic>mathematical modeling</topic><topic>Mathematical models</topic><topic>reactor analysis</topic><topic>Reactors</topic><topic>Sulfur</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ho, Teh C.</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ho, Teh C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A theory of ultradeep hydrodesulfurization of diesel in stacked‐bed reactors</atitle><jtitle>AIChE journal</jtitle><date>2018-02</date><risdate>2018</risdate><volume>64</volume><issue>2</issue><spage>595</spage><epage>605</epage><pages>595-605</pages><issn>0001-1541</issn><eissn>1547-5905</eissn><abstract>Hydrodesulfurization catalysts have two types of active sites for hydrogenation and hydrogenolysis reactions. While hydrogenation sites are more active for desulfurizing refractory sulfur species, they are more susceptible to organonitrogen inhibition than hydrogenolysis sites. In contrast, hydrogenolysis sites are more resistant to organonitrogen inhibition but are less active for desulfurizing refractory sulfur species. This dichotomy is exploited to develop an ultradeep hydrodesulfurization stacked‐bed reactor comprising two catalysts of different characteristics. The performance of such a catalyst system can be superior or inferior to that of either catalyst alone. A mathematical model is constructed to predict the optimum stacking configuration for maximum synergies between the two catalysts. The best configuration provides the precise environment for the catalysts to reach their full potentials, resulting in the smallest reactor and minimum hydrogen consumption. Model predictions are consistent with experimental results. A selectivity‐activity diagram is developed for guiding the development of stacked‐bed catalyst systems. © 2017 American Institute of Chemical Engineers AIChE J, 64: 595–605, 2018</abstract><cop>New York</cop><pub>American Institute of Chemical Engineers</pub><doi>10.1002/aic.15969</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-1541 |
ispartof | AIChE journal, 2018-02, Vol.64 (2), p.595-605 |
issn | 0001-1541 1547-5905 |
language | eng |
recordid | cdi_proquest_journals_1983910446 |
source | Access via Wiley Online Library |
subjects | Catalysis Catalysts Configurations Desulfurization Desulfurizing fuels hydrocarbon processing Hydrodesulfurization Hydrogen storage Hydrogenation Hydrogenolysis Inhibition mathematical modeling Mathematical models reactor analysis Reactors Sulfur |
title | A theory of ultradeep hydrodesulfurization of diesel in stacked‐bed reactors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T20%3A20%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20theory%20of%20ultradeep%20hydrodesulfurization%20of%20diesel%20in%20stacked%E2%80%90bed%20reactors&rft.jtitle=AIChE%20journal&rft.au=Ho,%20Teh%20C.&rft.date=2018-02&rft.volume=64&rft.issue=2&rft.spage=595&rft.epage=605&rft.pages=595-605&rft.issn=0001-1541&rft.eissn=1547-5905&rft_id=info:doi/10.1002/aic.15969&rft_dat=%3Cproquest_cross%3E1983910446%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1983910446&rft_id=info:pmid/&rfr_iscdi=true |