Bootstrap methods for stationary functional time series

Bootstrap methods for estimating the long-run covariance of stationary functional time series are considered. We introduce a versatile bootstrap method that relies on functional principal component analysis, where principal component scores can be bootstrapped by maximum entropy. Two other bootstrap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistics and computing 2018-01, Vol.28 (1), p.1-10
1. Verfasser: Shang, Han Lin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Bootstrap methods for estimating the long-run covariance of stationary functional time series are considered. We introduce a versatile bootstrap method that relies on functional principal component analysis, where principal component scores can be bootstrapped by maximum entropy. Two other bootstrap methods resample error functions, after the dependence structure being modeled linearly by a sieve method or nonlinearly by a functional kernel regression. Through a series of Monte-Carlo simulation, we evaluate and compare the finite-sample performances of these three bootstrap methods for estimating the long-run covariance in a functional time series. Using the intraday particulate matter ( PM 10 ) dataset in Graz, the proposed bootstrap methods provide a way of constructing the distribution of estimated long-run covariance for functional time series.
ISSN:0960-3174
1573-1375
DOI:10.1007/s11222-016-9712-8