Remarks on the stochastic integral

In Karandikar-Rao [11], the quadratic variation [ M , M ] of a (local) martingale was obtained directly using only Doob’s maximal inequality and it was remarked that the stochastic integral can be defined using [ M , M ], avoiding using the predictable quadratic variation 〈 M , M 〉 (of a locally squ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Indian journal of pure and applied mathematics 2017-12, Vol.48 (4), p.469-493
1. Verfasser: Karandikar, Rajeeva L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 493
container_issue 4
container_start_page 469
container_title Indian journal of pure and applied mathematics
container_volume 48
creator Karandikar, Rajeeva L.
description In Karandikar-Rao [11], the quadratic variation [ M , M ] of a (local) martingale was obtained directly using only Doob’s maximal inequality and it was remarked that the stochastic integral can be defined using [ M , M ], avoiding using the predictable quadratic variation 〈 M , M 〉 (of a locally square integrable martingale) as is usually done. This is accomplished here- starting with the result proved in [11], we construct ∫ f dX where X is a semimartingale and f is predictable and prove dominated convergence theorem (DCT) for the stochastic integral. Indeed, we characterize the class of integrands f for this integral as the class L ( X ) of predictable processes f such that | f | serves as the dominating function in the DCT for the stochastic integral. This observation seems to be new. We then discuss the vector stochastic integral ∫ 〈 f , dY 〉 where f is ℝ d valued predictable process, Y is ℝ d valued semimartingale. This was defined by Jacod [6] starting from vector valued simple functions. Memin [13] proved that for (local) martingales M 1 , … M d : If N n are martingales such that N t n → N t for every t and if ∃ f n such that N t n = ∫ 〈 f n , dM 〉, then ∃ f such that N = ∫ 〈 f , dM 〉. Taking a cue from our characterization of L( X ), we define the vector integral in terms of the scalar integral and then give a direct proof of the result due to Memin stated above. This completeness result is an important step in the proof of the Jacod-Yor [4] result on martingale representation property and uniqueness of equivalent martingale measure. This result is also known as the second fundamental theorem of asset pricing.
doi_str_mv 10.1007/s13226-017-0241-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1983887862</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1983887862</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-2af8bdb848776d2dcb8ed5e7bae7a041bf883d331cea20aca1d475c8a3cb19503</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EEqXwA9gimA13dhxfRlTxJVVCQjBbju20KSUpdjrw73EVBhamu-F93tM9jF0i3CCAvk0ohag4oOYgSuR0xGZQa8V1WanjvAPWXCmiU3aW0gagklDXM3b1Gj5t_EjF0BfjOhRpHNzaprFzRdePYRXt9pydtHabwsXvnLP3h_u3xRNfvjw-L-6W3ImKRi5sS41vqCStKy-8ayh4FXRjg7ZQYtMSSS8lumAFWGfRl1o5stI1WCuQc3Y99e7i8LUPaTSbYR_7fNJgTZJIUyVyCqeUi0NKMbRmF7v8wrdBMAcVZlJhsgpzUGEoM2JiUs72qxD_NP8L_QAqbWBR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1983887862</pqid></control><display><type>article</type><title>Remarks on the stochastic integral</title><source>SpringerLink Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Karandikar, Rajeeva L.</creator><creatorcontrib>Karandikar, Rajeeva L.</creatorcontrib><description>In Karandikar-Rao [11], the quadratic variation [ M , M ] of a (local) martingale was obtained directly using only Doob’s maximal inequality and it was remarked that the stochastic integral can be defined using [ M , M ], avoiding using the predictable quadratic variation 〈 M , M 〉 (of a locally square integrable martingale) as is usually done. This is accomplished here- starting with the result proved in [11], we construct ∫ f dX where X is a semimartingale and f is predictable and prove dominated convergence theorem (DCT) for the stochastic integral. Indeed, we characterize the class of integrands f for this integral as the class L ( X ) of predictable processes f such that | f | serves as the dominating function in the DCT for the stochastic integral. This observation seems to be new. We then discuss the vector stochastic integral ∫ 〈 f , dY 〉 where f is ℝ d valued predictable process, Y is ℝ d valued semimartingale. This was defined by Jacod [6] starting from vector valued simple functions. Memin [13] proved that for (local) martingales M 1 , … M d : If N n are martingales such that N t n → N t for every t and if ∃ f n such that N t n = ∫ 〈 f n , dM 〉, then ∃ f such that N = ∫ 〈 f , dM 〉. Taking a cue from our characterization of L( X ), we define the vector integral in terms of the scalar integral and then give a direct proof of the result due to Memin stated above. This completeness result is an important step in the proof of the Jacod-Yor [4] result on martingale representation property and uniqueness of equivalent martingale measure. This result is also known as the second fundamental theorem of asset pricing.</description><identifier>ISSN: 0019-5588</identifier><identifier>EISSN: 0975-7465</identifier><identifier>DOI: 10.1007/s13226-017-0241-8</identifier><language>eng</language><publisher>New Delhi: Indian National Science Academy</publisher><subject>Applications of Mathematics ; Hedging ; Integrals ; Martingales ; Mathematical functions ; Mathematics ; Mathematics and Statistics ; Numerical Analysis ; Theorems</subject><ispartof>Indian journal of pure and applied mathematics, 2017-12, Vol.48 (4), p.469-493</ispartof><rights>The Indian National Science Academy 2017</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-2af8bdb848776d2dcb8ed5e7bae7a041bf883d331cea20aca1d475c8a3cb19503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13226-017-0241-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13226-017-0241-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Karandikar, Rajeeva L.</creatorcontrib><title>Remarks on the stochastic integral</title><title>Indian journal of pure and applied mathematics</title><addtitle>Indian J Pure Appl Math</addtitle><description>In Karandikar-Rao [11], the quadratic variation [ M , M ] of a (local) martingale was obtained directly using only Doob’s maximal inequality and it was remarked that the stochastic integral can be defined using [ M , M ], avoiding using the predictable quadratic variation 〈 M , M 〉 (of a locally square integrable martingale) as is usually done. This is accomplished here- starting with the result proved in [11], we construct ∫ f dX where X is a semimartingale and f is predictable and prove dominated convergence theorem (DCT) for the stochastic integral. Indeed, we characterize the class of integrands f for this integral as the class L ( X ) of predictable processes f such that | f | serves as the dominating function in the DCT for the stochastic integral. This observation seems to be new. We then discuss the vector stochastic integral ∫ 〈 f , dY 〉 where f is ℝ d valued predictable process, Y is ℝ d valued semimartingale. This was defined by Jacod [6] starting from vector valued simple functions. Memin [13] proved that for (local) martingales M 1 , … M d : If N n are martingales such that N t n → N t for every t and if ∃ f n such that N t n = ∫ 〈 f n , dM 〉, then ∃ f such that N = ∫ 〈 f , dM 〉. Taking a cue from our characterization of L( X ), we define the vector integral in terms of the scalar integral and then give a direct proof of the result due to Memin stated above. This completeness result is an important step in the proof of the Jacod-Yor [4] result on martingale representation property and uniqueness of equivalent martingale measure. This result is also known as the second fundamental theorem of asset pricing.</description><subject>Applications of Mathematics</subject><subject>Hedging</subject><subject>Integrals</subject><subject>Martingales</subject><subject>Mathematical functions</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical Analysis</subject><subject>Theorems</subject><issn>0019-5588</issn><issn>0975-7465</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAQhi0EEqXwA9gimA13dhxfRlTxJVVCQjBbju20KSUpdjrw73EVBhamu-F93tM9jF0i3CCAvk0ohag4oOYgSuR0xGZQa8V1WanjvAPWXCmiU3aW0gagklDXM3b1Gj5t_EjF0BfjOhRpHNzaprFzRdePYRXt9pydtHabwsXvnLP3h_u3xRNfvjw-L-6W3ImKRi5sS41vqCStKy-8ayh4FXRjg7ZQYtMSSS8lumAFWGfRl1o5stI1WCuQc3Y99e7i8LUPaTSbYR_7fNJgTZJIUyVyCqeUi0NKMbRmF7v8wrdBMAcVZlJhsgpzUGEoM2JiUs72qxD_NP8L_QAqbWBR</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Karandikar, Rajeeva L.</creator><general>Indian National Science Academy</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20171201</creationdate><title>Remarks on the stochastic integral</title><author>Karandikar, Rajeeva L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-2af8bdb848776d2dcb8ed5e7bae7a041bf883d331cea20aca1d475c8a3cb19503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Applications of Mathematics</topic><topic>Hedging</topic><topic>Integrals</topic><topic>Martingales</topic><topic>Mathematical functions</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical Analysis</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karandikar, Rajeeva L.</creatorcontrib><collection>CrossRef</collection><jtitle>Indian journal of pure and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karandikar, Rajeeva L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Remarks on the stochastic integral</atitle><jtitle>Indian journal of pure and applied mathematics</jtitle><stitle>Indian J Pure Appl Math</stitle><date>2017-12-01</date><risdate>2017</risdate><volume>48</volume><issue>4</issue><spage>469</spage><epage>493</epage><pages>469-493</pages><issn>0019-5588</issn><eissn>0975-7465</eissn><abstract>In Karandikar-Rao [11], the quadratic variation [ M , M ] of a (local) martingale was obtained directly using only Doob’s maximal inequality and it was remarked that the stochastic integral can be defined using [ M , M ], avoiding using the predictable quadratic variation 〈 M , M 〉 (of a locally square integrable martingale) as is usually done. This is accomplished here- starting with the result proved in [11], we construct ∫ f dX where X is a semimartingale and f is predictable and prove dominated convergence theorem (DCT) for the stochastic integral. Indeed, we characterize the class of integrands f for this integral as the class L ( X ) of predictable processes f such that | f | serves as the dominating function in the DCT for the stochastic integral. This observation seems to be new. We then discuss the vector stochastic integral ∫ 〈 f , dY 〉 where f is ℝ d valued predictable process, Y is ℝ d valued semimartingale. This was defined by Jacod [6] starting from vector valued simple functions. Memin [13] proved that for (local) martingales M 1 , … M d : If N n are martingales such that N t n → N t for every t and if ∃ f n such that N t n = ∫ 〈 f n , dM 〉, then ∃ f such that N = ∫ 〈 f , dM 〉. Taking a cue from our characterization of L( X ), we define the vector integral in terms of the scalar integral and then give a direct proof of the result due to Memin stated above. This completeness result is an important step in the proof of the Jacod-Yor [4] result on martingale representation property and uniqueness of equivalent martingale measure. This result is also known as the second fundamental theorem of asset pricing.</abstract><cop>New Delhi</cop><pub>Indian National Science Academy</pub><doi>10.1007/s13226-017-0241-8</doi><tpages>25</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0019-5588
ispartof Indian journal of pure and applied mathematics, 2017-12, Vol.48 (4), p.469-493
issn 0019-5588
0975-7465
language eng
recordid cdi_proquest_journals_1983887862
source SpringerLink Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Applications of Mathematics
Hedging
Integrals
Martingales
Mathematical functions
Mathematics
Mathematics and Statistics
Numerical Analysis
Theorems
title Remarks on the stochastic integral
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T08%3A07%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Remarks%20on%20the%20stochastic%20integral&rft.jtitle=Indian%20journal%20of%20pure%20and%20applied%20mathematics&rft.au=Karandikar,%20Rajeeva%20L.&rft.date=2017-12-01&rft.volume=48&rft.issue=4&rft.spage=469&rft.epage=493&rft.pages=469-493&rft.issn=0019-5588&rft.eissn=0975-7465&rft_id=info:doi/10.1007/s13226-017-0241-8&rft_dat=%3Cproquest_cross%3E1983887862%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1983887862&rft_id=info:pmid/&rfr_iscdi=true