Bayesian optimization for genomic selection: a method for discovering the best genotype among a large number of candidates
Key message A new pre-breeding strategy based on an optimization algorithm is proposed and evaluated via simulations. This strategy can find superior genotypes with less phenotyping effort. Genomic prediction is a promising approach to search for superior genotypes among a large number of accessions...
Gespeichert in:
Veröffentlicht in: | Theoretical and applied genetics 2018-01, Vol.131 (1), p.93-105 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 105 |
---|---|
container_issue | 1 |
container_start_page | 93 |
container_title | Theoretical and applied genetics |
container_volume | 131 |
creator | Tanaka, Ryokei Iwata, Hiroyoshi |
description | Key message
A new pre-breeding strategy based on an optimization algorithm is proposed and evaluated via simulations. This strategy can find superior genotypes with less phenotyping effort.
Genomic prediction is a promising approach to search for superior genotypes among a large number of accessions in germplasm collections preserved in gene banks. When some accessions are phenotyped and genotyped, a prediction model can be built, and the genotypic values of the remaining accessions can be predicted from their marker genotypes. In this study, we focused on the application of genomic prediction to pre-breeding, and propose a novel strategy that would reduce the cost of phenotyping needed to discover better accessions. We regarded the exploration of superior genotypes with genomic prediction as an optimization problem, and introduced Bayesian optimization to solve it. Bayesian optimization, that samples unobserved inputs according to the expected improvement (EI) as a selection criterion, seemed to be beneficial in pre-breeding. The EI depends on the predicted distribution of genotypic values, whereas usual selection depends only on the point estimate. We simulated a search for the best genotype among candidate genotypes and showed that the EI-based strategy required fewer genotypes to identify the best genotype than the usual and random selection strategy. Therefore, Bayesian optimization can be useful for applying genomic prediction to pre-breeding and would reduce the number of phenotyped accessions needed to find the best accession among a large number of candidates. |
doi_str_mv | 10.1007/s00122-017-2988-z |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1983621665</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A521207679</galeid><sourcerecordid>A521207679</sourcerecordid><originalsourceid>FETCH-LOGICAL-c506t-63f330853938965c3d47defdbb41e9295c9e27ecb790131ed3d7e93e736f03ab3</originalsourceid><addsrcrecordid>eNp1kUtv3CAUhVHVqpmm_QHdVEhddeH0AjaY7pKoj0iRKvWxRthcO0RjMwVcdebXl8mkj5FasUA6fOfC4RDynMEZA1CvEwDjvAKmKq7btto9ICtWC15xXvOHZAVQQ9Wohp-QJyndAgBvQDwmJ7zVrZQtrMjuwm4xeTvTsMl-8jubfZjpECIdcQ6T72nCNfZ79Q21dMJ8E9zdufOpD98x-nmk-QZphynfmfJ2g9ROoeiWrm0ckc7L1GGkYaC9nZ13NmN6Sh4Ndp3w2f1-Sr6-e_vl8kN1_fH91eX5ddU3IHMlxSAEtI3QotWy6YWrlcPBdV3NUHPd9Bq5wr5TGphg6IRTqAUqIQcQthOn5OVh7iaGb0t5pLkNS5zLlYbpVkjOpGz-UKNdo_HzEHK0_VQymvOGMw5KKl2os39QZTksXxVmHHzRjwyvjgyFyfgjj3ZJyVx9_nTMsgPbx5BSxMFsop9s3BoGZl-4ORRuSuFmX7jZFc-L-3BLN6H77fjVcAH4AUibfVMY_0r_36k_AZEJtV4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1983621665</pqid></control><display><type>article</type><title>Bayesian optimization for genomic selection: a method for discovering the best genotype among a large number of candidates</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Tanaka, Ryokei ; Iwata, Hiroyoshi</creator><creatorcontrib>Tanaka, Ryokei ; Iwata, Hiroyoshi</creatorcontrib><description>Key message
A new pre-breeding strategy based on an optimization algorithm is proposed and evaluated via simulations. This strategy can find superior genotypes with less phenotyping effort.
Genomic prediction is a promising approach to search for superior genotypes among a large number of accessions in germplasm collections preserved in gene banks. When some accessions are phenotyped and genotyped, a prediction model can be built, and the genotypic values of the remaining accessions can be predicted from their marker genotypes. In this study, we focused on the application of genomic prediction to pre-breeding, and propose a novel strategy that would reduce the cost of phenotyping needed to discover better accessions. We regarded the exploration of superior genotypes with genomic prediction as an optimization problem, and introduced Bayesian optimization to solve it. Bayesian optimization, that samples unobserved inputs according to the expected improvement (EI) as a selection criterion, seemed to be beneficial in pre-breeding. The EI depends on the predicted distribution of genotypic values, whereas usual selection depends only on the point estimate. We simulated a search for the best genotype among candidate genotypes and showed that the EI-based strategy required fewer genotypes to identify the best genotype than the usual and random selection strategy. Therefore, Bayesian optimization can be useful for applying genomic prediction to pre-breeding and would reduce the number of phenotyped accessions needed to find the best accession among a large number of candidates.</description><identifier>ISSN: 0040-5752</identifier><identifier>EISSN: 1432-2242</identifier><identifier>DOI: 10.1007/s00122-017-2988-z</identifier><identifier>PMID: 28986680</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Agriculture ; Bayes Theorem ; Bayesian analysis ; Biochemistry ; Biomedical and Life Sciences ; Biotechnology ; Breeding ; Computer simulation ; Gene banks ; Genetic aspects ; Genotype ; Genotypes ; Germplasm ; Life Sciences ; Models, Genetic ; Optimization ; Optimization theory ; Original Article ; Phenotype ; Phenotyping ; Plant Biochemistry ; Plant Breeding ; Plant Breeding/Biotechnology ; Plant Genetics and Genomics ; Prediction models ; Selection, Genetic ; Strategy</subject><ispartof>Theoretical and applied genetics, 2018-01, Vol.131 (1), p.93-105</ispartof><rights>Springer-Verlag GmbH Germany 2017</rights><rights>COPYRIGHT 2018 Springer</rights><rights>Theoretical and Applied Genetics is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c506t-63f330853938965c3d47defdbb41e9295c9e27ecb790131ed3d7e93e736f03ab3</citedby><cites>FETCH-LOGICAL-c506t-63f330853938965c3d47defdbb41e9295c9e27ecb790131ed3d7e93e736f03ab3</cites><orcidid>0000-0002-6747-7036</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00122-017-2988-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00122-017-2988-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28986680$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tanaka, Ryokei</creatorcontrib><creatorcontrib>Iwata, Hiroyoshi</creatorcontrib><title>Bayesian optimization for genomic selection: a method for discovering the best genotype among a large number of candidates</title><title>Theoretical and applied genetics</title><addtitle>Theor Appl Genet</addtitle><addtitle>Theor Appl Genet</addtitle><description>Key message
A new pre-breeding strategy based on an optimization algorithm is proposed and evaluated via simulations. This strategy can find superior genotypes with less phenotyping effort.
Genomic prediction is a promising approach to search for superior genotypes among a large number of accessions in germplasm collections preserved in gene banks. When some accessions are phenotyped and genotyped, a prediction model can be built, and the genotypic values of the remaining accessions can be predicted from their marker genotypes. In this study, we focused on the application of genomic prediction to pre-breeding, and propose a novel strategy that would reduce the cost of phenotyping needed to discover better accessions. We regarded the exploration of superior genotypes with genomic prediction as an optimization problem, and introduced Bayesian optimization to solve it. Bayesian optimization, that samples unobserved inputs according to the expected improvement (EI) as a selection criterion, seemed to be beneficial in pre-breeding. The EI depends on the predicted distribution of genotypic values, whereas usual selection depends only on the point estimate. We simulated a search for the best genotype among candidate genotypes and showed that the EI-based strategy required fewer genotypes to identify the best genotype than the usual and random selection strategy. Therefore, Bayesian optimization can be useful for applying genomic prediction to pre-breeding and would reduce the number of phenotyped accessions needed to find the best accession among a large number of candidates.</description><subject>Agriculture</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Breeding</subject><subject>Computer simulation</subject><subject>Gene banks</subject><subject>Genetic aspects</subject><subject>Genotype</subject><subject>Genotypes</subject><subject>Germplasm</subject><subject>Life Sciences</subject><subject>Models, Genetic</subject><subject>Optimization</subject><subject>Optimization theory</subject><subject>Original Article</subject><subject>Phenotype</subject><subject>Phenotyping</subject><subject>Plant Biochemistry</subject><subject>Plant Breeding</subject><subject>Plant Breeding/Biotechnology</subject><subject>Plant Genetics and Genomics</subject><subject>Prediction models</subject><subject>Selection, Genetic</subject><subject>Strategy</subject><issn>0040-5752</issn><issn>1432-2242</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kUtv3CAUhVHVqpmm_QHdVEhddeH0AjaY7pKoj0iRKvWxRthcO0RjMwVcdebXl8mkj5FasUA6fOfC4RDynMEZA1CvEwDjvAKmKq7btto9ICtWC15xXvOHZAVQQ9Wohp-QJyndAgBvQDwmJ7zVrZQtrMjuwm4xeTvTsMl-8jubfZjpECIdcQ6T72nCNfZ79Q21dMJ8E9zdufOpD98x-nmk-QZphynfmfJ2g9ROoeiWrm0ckc7L1GGkYaC9nZ13NmN6Sh4Ndp3w2f1-Sr6-e_vl8kN1_fH91eX5ddU3IHMlxSAEtI3QotWy6YWrlcPBdV3NUHPd9Bq5wr5TGphg6IRTqAUqIQcQthOn5OVh7iaGb0t5pLkNS5zLlYbpVkjOpGz-UKNdo_HzEHK0_VQymvOGMw5KKl2os39QZTksXxVmHHzRjwyvjgyFyfgjj3ZJyVx9_nTMsgPbx5BSxMFsop9s3BoGZl-4ORRuSuFmX7jZFc-L-3BLN6H77fjVcAH4AUibfVMY_0r_36k_AZEJtV4</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Tanaka, Ryokei</creator><creator>Iwata, Hiroyoshi</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7SS</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0002-6747-7036</orcidid></search><sort><creationdate>20180101</creationdate><title>Bayesian optimization for genomic selection: a method for discovering the best genotype among a large number of candidates</title><author>Tanaka, Ryokei ; Iwata, Hiroyoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c506t-63f330853938965c3d47defdbb41e9295c9e27ecb790131ed3d7e93e736f03ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Agriculture</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Breeding</topic><topic>Computer simulation</topic><topic>Gene banks</topic><topic>Genetic aspects</topic><topic>Genotype</topic><topic>Genotypes</topic><topic>Germplasm</topic><topic>Life Sciences</topic><topic>Models, Genetic</topic><topic>Optimization</topic><topic>Optimization theory</topic><topic>Original Article</topic><topic>Phenotype</topic><topic>Phenotyping</topic><topic>Plant Biochemistry</topic><topic>Plant Breeding</topic><topic>Plant Breeding/Biotechnology</topic><topic>Plant Genetics and Genomics</topic><topic>Prediction models</topic><topic>Selection, Genetic</topic><topic>Strategy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tanaka, Ryokei</creatorcontrib><creatorcontrib>Iwata, Hiroyoshi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><jtitle>Theoretical and applied genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tanaka, Ryokei</au><au>Iwata, Hiroyoshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian optimization for genomic selection: a method for discovering the best genotype among a large number of candidates</atitle><jtitle>Theoretical and applied genetics</jtitle><stitle>Theor Appl Genet</stitle><addtitle>Theor Appl Genet</addtitle><date>2018-01-01</date><risdate>2018</risdate><volume>131</volume><issue>1</issue><spage>93</spage><epage>105</epage><pages>93-105</pages><issn>0040-5752</issn><eissn>1432-2242</eissn><abstract>Key message
A new pre-breeding strategy based on an optimization algorithm is proposed and evaluated via simulations. This strategy can find superior genotypes with less phenotyping effort.
Genomic prediction is a promising approach to search for superior genotypes among a large number of accessions in germplasm collections preserved in gene banks. When some accessions are phenotyped and genotyped, a prediction model can be built, and the genotypic values of the remaining accessions can be predicted from their marker genotypes. In this study, we focused on the application of genomic prediction to pre-breeding, and propose a novel strategy that would reduce the cost of phenotyping needed to discover better accessions. We regarded the exploration of superior genotypes with genomic prediction as an optimization problem, and introduced Bayesian optimization to solve it. Bayesian optimization, that samples unobserved inputs according to the expected improvement (EI) as a selection criterion, seemed to be beneficial in pre-breeding. The EI depends on the predicted distribution of genotypic values, whereas usual selection depends only on the point estimate. We simulated a search for the best genotype among candidate genotypes and showed that the EI-based strategy required fewer genotypes to identify the best genotype than the usual and random selection strategy. Therefore, Bayesian optimization can be useful for applying genomic prediction to pre-breeding and would reduce the number of phenotyped accessions needed to find the best accession among a large number of candidates.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>28986680</pmid><doi>10.1007/s00122-017-2988-z</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-6747-7036</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0040-5752 |
ispartof | Theoretical and applied genetics, 2018-01, Vol.131 (1), p.93-105 |
issn | 0040-5752 1432-2242 |
language | eng |
recordid | cdi_proquest_journals_1983621665 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Agriculture Bayes Theorem Bayesian analysis Biochemistry Biomedical and Life Sciences Biotechnology Breeding Computer simulation Gene banks Genetic aspects Genotype Genotypes Germplasm Life Sciences Models, Genetic Optimization Optimization theory Original Article Phenotype Phenotyping Plant Biochemistry Plant Breeding Plant Breeding/Biotechnology Plant Genetics and Genomics Prediction models Selection, Genetic Strategy |
title | Bayesian optimization for genomic selection: a method for discovering the best genotype among a large number of candidates |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T12%3A41%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20optimization%20for%20genomic%20selection:%20a%20method%20for%20discovering%20the%20best%20genotype%20among%20a%20large%20number%20of%20candidates&rft.jtitle=Theoretical%20and%20applied%20genetics&rft.au=Tanaka,%20Ryokei&rft.date=2018-01-01&rft.volume=131&rft.issue=1&rft.spage=93&rft.epage=105&rft.pages=93-105&rft.issn=0040-5752&rft.eissn=1432-2242&rft_id=info:doi/10.1007/s00122-017-2988-z&rft_dat=%3Cgale_proqu%3EA521207679%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1983621665&rft_id=info:pmid/28986680&rft_galeid=A521207679&rfr_iscdi=true |