Robust Speed Tracking Control for a Micro Turbine as a Distributed Energy Resource via Feedback Domination and Disturbance Observer

Micro turbine (MT) is characterized with complex dynamics, parameter uncertainties, and variable working conditions. In this paper, a novel robust controller is investigated for a single-shaft micro turbine as a distributed energy resource by integrating a feedback domination control technique and a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2017-01, Vol.2017 (2017), p.1-9
Hauptverfasser: Xu, Ancheng, Chen, Hui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Micro turbine (MT) is characterized with complex dynamics, parameter uncertainties, and variable working conditions. In this paper, a novel robust controller is investigated for a single-shaft micro turbine as a distributed energy resource by integrating a feedback domination control technique and a feedforward disturbance compensation. An active estimation process of the mismatched disturbances is firstly enabled by constructing a disturbance observer. Secondly, we adopt a feedback domination technique, rather than popularly used feedback linearization methods, to handle the system nonlinearities. In an explicit way, the composite controllers are then derived by recursive design based on Lyapunov theory while a global input-to-state stability can be guaranteed. Abundant comparison simulation results are provided to demonstrate the effectiveness of the proposed scheme, which not only perform an improved closed-loop control performance comparing to all existing results, but also render a simple control law which will ease its practical implementation.
ISSN:1024-123X
1563-5147
DOI:10.1155/2017/5719271