On the Sums of Powers of Chebyshev Polynomials and Their Divisible Properties
The main purpose of this paper is using mathematical induction and the Girard and Waring formula to study a problem involving the sums of powers of the Chebyshev polynomials and prove some divisible properties. We obtained two interesting congruence results involving Fibonacci numbers and Lucas numb...
Gespeichert in:
Veröffentlicht in: | Mathematical problems in engineering 2017-01, Vol.2017 (2017), p.1-6 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6 |
---|---|
container_issue | 2017 |
container_start_page | 1 |
container_title | Mathematical problems in engineering |
container_volume | 2017 |
creator | Zhang, Lan Zhang, Wenpeng |
description | The main purpose of this paper is using mathematical induction and the Girard and Waring formula to study a problem involving the sums of powers of the Chebyshev polynomials and prove some divisible properties. We obtained two interesting congruence results involving Fibonacci numbers and Lucas numbers as some applications of our theorem. |
doi_str_mv | 10.1155/2017/9363680 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1983448155</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1983448155</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-2bb6bf9355ee8691cc37de880f16dca604639e5f69dd808bb04f56492b5373ca3</originalsourceid><addsrcrecordid>eNqF0M9LwzAUB_AgCs7pzbMEPGpd0jRpcpT5EyYbOMFbadoXmrE1M-k29t-bWcGjp_fl8eE9-CJ0SckdpZyPUkLzkWKCCUmO0IBywRJOs_w4ZpJmCU3Z5yk6C2FBSEo5lQP0Nm1x1wB-36wCdgbP3A78Txo3oPehgW3cLfetW9lyGXDZ1njegPX4wW5tsHoJeObdGnxnIZyjExMVXPzOIfp4epyPX5LJ9Pl1fD9JKkbzLkm1FtooxjmAFIpWFctrkJIYKuqqFCQTTAE3QtW1JFJrkhkuMpVqznJWlWyIrvu7a---NhC6YuE2vo0vC6okyzIZ64jqtleVdyF4MMXa21Xp9wUlxaGw4lBY8VtY5Dc9b2xblzv7n77qNUQDpvzTVKUiV-wbM5Jznw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1983448155</pqid></control><display><type>article</type><title>On the Sums of Powers of Chebyshev Polynomials and Their Divisible Properties</title><source>Wiley Online Library Open Access</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Zhang, Lan ; Zhang, Wenpeng</creator><contributor>Han, Zhen-Lai</contributor><creatorcontrib>Zhang, Lan ; Zhang, Wenpeng ; Han, Zhen-Lai</creatorcontrib><description>The main purpose of this paper is using mathematical induction and the Girard and Waring formula to study a problem involving the sums of powers of the Chebyshev polynomials and prove some divisible properties. We obtained two interesting congruence results involving Fibonacci numbers and Lucas numbers as some applications of our theorem.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2017/9363680</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Chebyshev approximation ; Fibonacci numbers ; Mathematical problems ; Polynomials ; Sums</subject><ispartof>Mathematical problems in engineering, 2017-01, Vol.2017 (2017), p.1-6</ispartof><rights>Copyright © 2017 Lan Zhang and Wenpeng Zhang.</rights><rights>Copyright © 2017 Lan Zhang and Wenpeng Zhang.; This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c317t-2bb6bf9355ee8691cc37de880f16dca604639e5f69dd808bb04f56492b5373ca3</cites><orcidid>0000-0001-6856-0336 ; 0000-0002-2560-3559</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><contributor>Han, Zhen-Lai</contributor><creatorcontrib>Zhang, Lan</creatorcontrib><creatorcontrib>Zhang, Wenpeng</creatorcontrib><title>On the Sums of Powers of Chebyshev Polynomials and Their Divisible Properties</title><title>Mathematical problems in engineering</title><description>The main purpose of this paper is using mathematical induction and the Girard and Waring formula to study a problem involving the sums of powers of the Chebyshev polynomials and prove some divisible properties. We obtained two interesting congruence results involving Fibonacci numbers and Lucas numbers as some applications of our theorem.</description><subject>Chebyshev approximation</subject><subject>Fibonacci numbers</subject><subject>Mathematical problems</subject><subject>Polynomials</subject><subject>Sums</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>BENPR</sourceid><recordid>eNqF0M9LwzAUB_AgCs7pzbMEPGpd0jRpcpT5EyYbOMFbadoXmrE1M-k29t-bWcGjp_fl8eE9-CJ0SckdpZyPUkLzkWKCCUmO0IBywRJOs_w4ZpJmCU3Z5yk6C2FBSEo5lQP0Nm1x1wB-36wCdgbP3A78Txo3oPehgW3cLfetW9lyGXDZ1njegPX4wW5tsHoJeObdGnxnIZyjExMVXPzOIfp4epyPX5LJ9Pl1fD9JKkbzLkm1FtooxjmAFIpWFctrkJIYKuqqFCQTTAE3QtW1JFJrkhkuMpVqznJWlWyIrvu7a---NhC6YuE2vo0vC6okyzIZ64jqtleVdyF4MMXa21Xp9wUlxaGw4lBY8VtY5Dc9b2xblzv7n77qNUQDpvzTVKUiV-wbM5Jznw</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Zhang, Lan</creator><creator>Zhang, Wenpeng</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-6856-0336</orcidid><orcidid>https://orcid.org/0000-0002-2560-3559</orcidid></search><sort><creationdate>20170101</creationdate><title>On the Sums of Powers of Chebyshev Polynomials and Their Divisible Properties</title><author>Zhang, Lan ; Zhang, Wenpeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-2bb6bf9355ee8691cc37de880f16dca604639e5f69dd808bb04f56492b5373ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Chebyshev approximation</topic><topic>Fibonacci numbers</topic><topic>Mathematical problems</topic><topic>Polynomials</topic><topic>Sums</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Lan</creatorcontrib><creatorcontrib>Zhang, Wenpeng</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Lan</au><au>Zhang, Wenpeng</au><au>Han, Zhen-Lai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Sums of Powers of Chebyshev Polynomials and Their Divisible Properties</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2017-01-01</date><risdate>2017</risdate><volume>2017</volume><issue>2017</issue><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>The main purpose of this paper is using mathematical induction and the Girard and Waring formula to study a problem involving the sums of powers of the Chebyshev polynomials and prove some divisible properties. We obtained two interesting congruence results involving Fibonacci numbers and Lucas numbers as some applications of our theorem.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2017/9363680</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-6856-0336</orcidid><orcidid>https://orcid.org/0000-0002-2560-3559</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1024-123X |
ispartof | Mathematical problems in engineering, 2017-01, Vol.2017 (2017), p.1-6 |
issn | 1024-123X 1563-5147 |
language | eng |
recordid | cdi_proquest_journals_1983448155 |
source | Wiley Online Library Open Access; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Chebyshev approximation Fibonacci numbers Mathematical problems Polynomials Sums |
title | On the Sums of Powers of Chebyshev Polynomials and Their Divisible Properties |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T03%3A01%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Sums%20of%20Powers%20of%20Chebyshev%20Polynomials%20and%20Their%20Divisible%20Properties&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Zhang,%20Lan&rft.date=2017-01-01&rft.volume=2017&rft.issue=2017&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2017/9363680&rft_dat=%3Cproquest_cross%3E1983448155%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1983448155&rft_id=info:pmid/&rfr_iscdi=true |