On the Sums of Powers of Chebyshev Polynomials and Their Divisible Properties

The main purpose of this paper is using mathematical induction and the Girard and Waring formula to study a problem involving the sums of powers of the Chebyshev polynomials and prove some divisible properties. We obtained two interesting congruence results involving Fibonacci numbers and Lucas numb...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2017-01, Vol.2017 (2017), p.1-6
Hauptverfasser: Zhang, Lan, Zhang, Wenpeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6
container_issue 2017
container_start_page 1
container_title Mathematical problems in engineering
container_volume 2017
creator Zhang, Lan
Zhang, Wenpeng
description The main purpose of this paper is using mathematical induction and the Girard and Waring formula to study a problem involving the sums of powers of the Chebyshev polynomials and prove some divisible properties. We obtained two interesting congruence results involving Fibonacci numbers and Lucas numbers as some applications of our theorem.
doi_str_mv 10.1155/2017/9363680
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1983448155</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1983448155</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-2bb6bf9355ee8691cc37de880f16dca604639e5f69dd808bb04f56492b5373ca3</originalsourceid><addsrcrecordid>eNqF0M9LwzAUB_AgCs7pzbMEPGpd0jRpcpT5EyYbOMFbadoXmrE1M-k29t-bWcGjp_fl8eE9-CJ0SckdpZyPUkLzkWKCCUmO0IBywRJOs_w4ZpJmCU3Z5yk6C2FBSEo5lQP0Nm1x1wB-36wCdgbP3A78Txo3oPehgW3cLfetW9lyGXDZ1njegPX4wW5tsHoJeObdGnxnIZyjExMVXPzOIfp4epyPX5LJ9Pl1fD9JKkbzLkm1FtooxjmAFIpWFctrkJIYKuqqFCQTTAE3QtW1JFJrkhkuMpVqznJWlWyIrvu7a---NhC6YuE2vo0vC6okyzIZ64jqtleVdyF4MMXa21Xp9wUlxaGw4lBY8VtY5Dc9b2xblzv7n77qNUQDpvzTVKUiV-wbM5Jznw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1983448155</pqid></control><display><type>article</type><title>On the Sums of Powers of Chebyshev Polynomials and Their Divisible Properties</title><source>Wiley Online Library Open Access</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Zhang, Lan ; Zhang, Wenpeng</creator><contributor>Han, Zhen-Lai</contributor><creatorcontrib>Zhang, Lan ; Zhang, Wenpeng ; Han, Zhen-Lai</creatorcontrib><description>The main purpose of this paper is using mathematical induction and the Girard and Waring formula to study a problem involving the sums of powers of the Chebyshev polynomials and prove some divisible properties. We obtained two interesting congruence results involving Fibonacci numbers and Lucas numbers as some applications of our theorem.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2017/9363680</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Chebyshev approximation ; Fibonacci numbers ; Mathematical problems ; Polynomials ; Sums</subject><ispartof>Mathematical problems in engineering, 2017-01, Vol.2017 (2017), p.1-6</ispartof><rights>Copyright © 2017 Lan Zhang and Wenpeng Zhang.</rights><rights>Copyright © 2017 Lan Zhang and Wenpeng Zhang.; This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c317t-2bb6bf9355ee8691cc37de880f16dca604639e5f69dd808bb04f56492b5373ca3</cites><orcidid>0000-0001-6856-0336 ; 0000-0002-2560-3559</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><contributor>Han, Zhen-Lai</contributor><creatorcontrib>Zhang, Lan</creatorcontrib><creatorcontrib>Zhang, Wenpeng</creatorcontrib><title>On the Sums of Powers of Chebyshev Polynomials and Their Divisible Properties</title><title>Mathematical problems in engineering</title><description>The main purpose of this paper is using mathematical induction and the Girard and Waring formula to study a problem involving the sums of powers of the Chebyshev polynomials and prove some divisible properties. We obtained two interesting congruence results involving Fibonacci numbers and Lucas numbers as some applications of our theorem.</description><subject>Chebyshev approximation</subject><subject>Fibonacci numbers</subject><subject>Mathematical problems</subject><subject>Polynomials</subject><subject>Sums</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>BENPR</sourceid><recordid>eNqF0M9LwzAUB_AgCs7pzbMEPGpd0jRpcpT5EyYbOMFbadoXmrE1M-k29t-bWcGjp_fl8eE9-CJ0SckdpZyPUkLzkWKCCUmO0IBywRJOs_w4ZpJmCU3Z5yk6C2FBSEo5lQP0Nm1x1wB-36wCdgbP3A78Txo3oPehgW3cLfetW9lyGXDZ1njegPX4wW5tsHoJeObdGnxnIZyjExMVXPzOIfp4epyPX5LJ9Pl1fD9JKkbzLkm1FtooxjmAFIpWFctrkJIYKuqqFCQTTAE3QtW1JFJrkhkuMpVqznJWlWyIrvu7a---NhC6YuE2vo0vC6okyzIZ64jqtleVdyF4MMXa21Xp9wUlxaGw4lBY8VtY5Dc9b2xblzv7n77qNUQDpvzTVKUiV-wbM5Jznw</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Zhang, Lan</creator><creator>Zhang, Wenpeng</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-6856-0336</orcidid><orcidid>https://orcid.org/0000-0002-2560-3559</orcidid></search><sort><creationdate>20170101</creationdate><title>On the Sums of Powers of Chebyshev Polynomials and Their Divisible Properties</title><author>Zhang, Lan ; Zhang, Wenpeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-2bb6bf9355ee8691cc37de880f16dca604639e5f69dd808bb04f56492b5373ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Chebyshev approximation</topic><topic>Fibonacci numbers</topic><topic>Mathematical problems</topic><topic>Polynomials</topic><topic>Sums</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Lan</creatorcontrib><creatorcontrib>Zhang, Wenpeng</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Lan</au><au>Zhang, Wenpeng</au><au>Han, Zhen-Lai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Sums of Powers of Chebyshev Polynomials and Their Divisible Properties</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2017-01-01</date><risdate>2017</risdate><volume>2017</volume><issue>2017</issue><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>The main purpose of this paper is using mathematical induction and the Girard and Waring formula to study a problem involving the sums of powers of the Chebyshev polynomials and prove some divisible properties. We obtained two interesting congruence results involving Fibonacci numbers and Lucas numbers as some applications of our theorem.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2017/9363680</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-6856-0336</orcidid><orcidid>https://orcid.org/0000-0002-2560-3559</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1024-123X
ispartof Mathematical problems in engineering, 2017-01, Vol.2017 (2017), p.1-6
issn 1024-123X
1563-5147
language eng
recordid cdi_proquest_journals_1983448155
source Wiley Online Library Open Access; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Chebyshev approximation
Fibonacci numbers
Mathematical problems
Polynomials
Sums
title On the Sums of Powers of Chebyshev Polynomials and Their Divisible Properties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T03%3A01%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Sums%20of%20Powers%20of%20Chebyshev%20Polynomials%20and%20Their%20Divisible%20Properties&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Zhang,%20Lan&rft.date=2017-01-01&rft.volume=2017&rft.issue=2017&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2017/9363680&rft_dat=%3Cproquest_cross%3E1983448155%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1983448155&rft_id=info:pmid/&rfr_iscdi=true