Research and Implementation of a 1800°C Sapphire Ultrasonic Thermometer

A sapphire ultrasonic temperature sensor was produced in this study which possessed working stability, antioxidation properties, and small acoustic-signal attenuation. A method was developed to solve the problems of long periods (>0.5 h) and ultrahigh temperature (1800°C) in tests. The sensor ado...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of sensors 2017, Vol.2017 (2017), p.1-7
Hauptverfasser: Xue, Hongxin, Wang, Gao, Liu, Zhengguang, Yang, Lu, Yang, Fengbao, Liang, Haijian, Wei, Yanlong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7
container_issue 2017
container_start_page 1
container_title Journal of sensors
container_volume 2017
creator Xue, Hongxin
Wang, Gao
Liu, Zhengguang
Yang, Lu
Yang, Fengbao
Liang, Haijian
Wei, Yanlong
description A sapphire ultrasonic temperature sensor was produced in this study which possessed working stability, antioxidation properties, and small acoustic-signal attenuation. A method was developed to solve the problems of long periods (>0.5 h) and ultrahigh temperature (1800°C) in tests. The sensor adopted here had good sound transmission performance as well as the high thermal conductivity of sapphire single crystals (Al2O3), as ultrasonic waveguides. The ultrasonic waveguide was produced by the method of the laser-heated pedestal growth (LHPG method). Calibration experiments in a high temperature furnace found that, at high temperatures and long exposure, sapphire ultrasonic temperature sensors had good stability and repeatability, and it survived in 1600°C for 360 min. This sapphire ultrasonic temperature sensor has potential for applications in aircraft engines where monitoring of high temperatures is very important.
doi_str_mv 10.1155/2017/9710763
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1983447872</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1983447872</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4083-31bbf820feb219fd5d47e10de5fd60225dcc7360cc37ac22e67bf5601121695e3</originalsourceid><addsrcrecordid>eNqF0M1Kw0AQwPEgCtbqzbMseNTYnd3sR45S1BYKgrbgLWw2szSl-XA3RXwrn8EnMyVFj55mDj9m4B9Fl0DvAISYMApqkiqgSvKjaARSq1gxqY9_d_F2Gp2FsKFUcsX5KJq9YEDj7ZqYuiDzqt1ihXVnurKpSeOIIaAp_f6aklfTtuvSI1ltO29CU5eWLNfoq6bCDv15dOLMNuDFYY6j1ePDcjqLF89P8-n9IrYJ1TzmkOdOM-owZ5C6QhSJQqAFCldIypgorFVcUmu5MpYxlCp3QlIABjIVyMfR9XC39c37DkOXbZqdr_uXGaSaJ4nSivXqdlDWNyF4dFnry8r4zwxotm-V7Vtlh1Y9vxn4uqwL81H-p68Gjb1BZ_40aKUg5T_fW3Hs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1983447872</pqid></control><display><type>article</type><title>Research and Implementation of a 1800°C Sapphire Ultrasonic Thermometer</title><source>Wiley-Blackwell Open Access Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Xue, Hongxin ; Wang, Gao ; Liu, Zhengguang ; Yang, Lu ; Yang, Fengbao ; Liang, Haijian ; Wei, Yanlong</creator><contributor>Evoy, Stephane</contributor><creatorcontrib>Xue, Hongxin ; Wang, Gao ; Liu, Zhengguang ; Yang, Lu ; Yang, Fengbao ; Liang, Haijian ; Wei, Yanlong ; Evoy, Stephane</creatorcontrib><description>A sapphire ultrasonic temperature sensor was produced in this study which possessed working stability, antioxidation properties, and small acoustic-signal attenuation. A method was developed to solve the problems of long periods (&gt;0.5 h) and ultrahigh temperature (1800°C) in tests. The sensor adopted here had good sound transmission performance as well as the high thermal conductivity of sapphire single crystals (Al2O3), as ultrasonic waveguides. The ultrasonic waveguide was produced by the method of the laser-heated pedestal growth (LHPG method). Calibration experiments in a high temperature furnace found that, at high temperatures and long exposure, sapphire ultrasonic temperature sensors had good stability and repeatability, and it survived in 1600°C for 360 min. This sapphire ultrasonic temperature sensor has potential for applications in aircraft engines where monitoring of high temperatures is very important.</description><identifier>ISSN: 1687-725X</identifier><identifier>EISSN: 1687-7268</identifier><identifier>DOI: 10.1155/2017/9710763</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Acoustic attenuation ; Acoustic properties ; Acoustics ; Aircraft engines ; Aluminum oxide ; High temperature ; Laser beam heating ; Optics ; Sapphire ; Sensors ; Single crystals ; Sound transmission ; Stability ; Temperature sensors ; Thermal conductivity ; Thermometers ; Ultrahigh temperature ; Ultrasonic transducers ; Velocity ; Waveguides</subject><ispartof>Journal of sensors, 2017, Vol.2017 (2017), p.1-7</ispartof><rights>Copyright © 2017 Haijian Liang et al.</rights><rights>Copyright © 2017 Haijian Liang et al.; This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4083-31bbf820feb219fd5d47e10de5fd60225dcc7360cc37ac22e67bf5601121695e3</citedby><cites>FETCH-LOGICAL-c4083-31bbf820feb219fd5d47e10de5fd60225dcc7360cc37ac22e67bf5601121695e3</cites><orcidid>0000-0003-2185-0648</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4009,27902,27903,27904</link.rule.ids></links><search><contributor>Evoy, Stephane</contributor><creatorcontrib>Xue, Hongxin</creatorcontrib><creatorcontrib>Wang, Gao</creatorcontrib><creatorcontrib>Liu, Zhengguang</creatorcontrib><creatorcontrib>Yang, Lu</creatorcontrib><creatorcontrib>Yang, Fengbao</creatorcontrib><creatorcontrib>Liang, Haijian</creatorcontrib><creatorcontrib>Wei, Yanlong</creatorcontrib><title>Research and Implementation of a 1800°C Sapphire Ultrasonic Thermometer</title><title>Journal of sensors</title><description>A sapphire ultrasonic temperature sensor was produced in this study which possessed working stability, antioxidation properties, and small acoustic-signal attenuation. A method was developed to solve the problems of long periods (&gt;0.5 h) and ultrahigh temperature (1800°C) in tests. The sensor adopted here had good sound transmission performance as well as the high thermal conductivity of sapphire single crystals (Al2O3), as ultrasonic waveguides. The ultrasonic waveguide was produced by the method of the laser-heated pedestal growth (LHPG method). Calibration experiments in a high temperature furnace found that, at high temperatures and long exposure, sapphire ultrasonic temperature sensors had good stability and repeatability, and it survived in 1600°C for 360 min. This sapphire ultrasonic temperature sensor has potential for applications in aircraft engines where monitoring of high temperatures is very important.</description><subject>Acoustic attenuation</subject><subject>Acoustic properties</subject><subject>Acoustics</subject><subject>Aircraft engines</subject><subject>Aluminum oxide</subject><subject>High temperature</subject><subject>Laser beam heating</subject><subject>Optics</subject><subject>Sapphire</subject><subject>Sensors</subject><subject>Single crystals</subject><subject>Sound transmission</subject><subject>Stability</subject><subject>Temperature sensors</subject><subject>Thermal conductivity</subject><subject>Thermometers</subject><subject>Ultrahigh temperature</subject><subject>Ultrasonic transducers</subject><subject>Velocity</subject><subject>Waveguides</subject><issn>1687-725X</issn><issn>1687-7268</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0M1Kw0AQwPEgCtbqzbMseNTYnd3sR45S1BYKgrbgLWw2szSl-XA3RXwrn8EnMyVFj55mDj9m4B9Fl0DvAISYMApqkiqgSvKjaARSq1gxqY9_d_F2Gp2FsKFUcsX5KJq9YEDj7ZqYuiDzqt1ihXVnurKpSeOIIaAp_f6aklfTtuvSI1ltO29CU5eWLNfoq6bCDv15dOLMNuDFYY6j1ePDcjqLF89P8-n9IrYJ1TzmkOdOM-owZ5C6QhSJQqAFCldIypgorFVcUmu5MpYxlCp3QlIABjIVyMfR9XC39c37DkOXbZqdr_uXGaSaJ4nSivXqdlDWNyF4dFnry8r4zwxotm-V7Vtlh1Y9vxn4uqwL81H-p68Gjb1BZ_40aKUg5T_fW3Hs</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Xue, Hongxin</creator><creator>Wang, Gao</creator><creator>Liu, Zhengguang</creator><creator>Yang, Lu</creator><creator>Yang, Fengbao</creator><creator>Liang, Haijian</creator><creator>Wei, Yanlong</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SP</scope><scope>7U5</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-2185-0648</orcidid></search><sort><creationdate>2017</creationdate><title>Research and Implementation of a 1800°C Sapphire Ultrasonic Thermometer</title><author>Xue, Hongxin ; Wang, Gao ; Liu, Zhengguang ; Yang, Lu ; Yang, Fengbao ; Liang, Haijian ; Wei, Yanlong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4083-31bbf820feb219fd5d47e10de5fd60225dcc7360cc37ac22e67bf5601121695e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Acoustic attenuation</topic><topic>Acoustic properties</topic><topic>Acoustics</topic><topic>Aircraft engines</topic><topic>Aluminum oxide</topic><topic>High temperature</topic><topic>Laser beam heating</topic><topic>Optics</topic><topic>Sapphire</topic><topic>Sensors</topic><topic>Single crystals</topic><topic>Sound transmission</topic><topic>Stability</topic><topic>Temperature sensors</topic><topic>Thermal conductivity</topic><topic>Thermometers</topic><topic>Ultrahigh temperature</topic><topic>Ultrasonic transducers</topic><topic>Velocity</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xue, Hongxin</creatorcontrib><creatorcontrib>Wang, Gao</creatorcontrib><creatorcontrib>Liu, Zhengguang</creatorcontrib><creatorcontrib>Yang, Lu</creatorcontrib><creatorcontrib>Yang, Fengbao</creatorcontrib><creatorcontrib>Liang, Haijian</creatorcontrib><creatorcontrib>Wei, Yanlong</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of sensors</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xue, Hongxin</au><au>Wang, Gao</au><au>Liu, Zhengguang</au><au>Yang, Lu</au><au>Yang, Fengbao</au><au>Liang, Haijian</au><au>Wei, Yanlong</au><au>Evoy, Stephane</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research and Implementation of a 1800°C Sapphire Ultrasonic Thermometer</atitle><jtitle>Journal of sensors</jtitle><date>2017</date><risdate>2017</risdate><volume>2017</volume><issue>2017</issue><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>1687-725X</issn><eissn>1687-7268</eissn><abstract>A sapphire ultrasonic temperature sensor was produced in this study which possessed working stability, antioxidation properties, and small acoustic-signal attenuation. A method was developed to solve the problems of long periods (&gt;0.5 h) and ultrahigh temperature (1800°C) in tests. The sensor adopted here had good sound transmission performance as well as the high thermal conductivity of sapphire single crystals (Al2O3), as ultrasonic waveguides. The ultrasonic waveguide was produced by the method of the laser-heated pedestal growth (LHPG method). Calibration experiments in a high temperature furnace found that, at high temperatures and long exposure, sapphire ultrasonic temperature sensors had good stability and repeatability, and it survived in 1600°C for 360 min. This sapphire ultrasonic temperature sensor has potential for applications in aircraft engines where monitoring of high temperatures is very important.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2017/9710763</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-2185-0648</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-725X
ispartof Journal of sensors, 2017, Vol.2017 (2017), p.1-7
issn 1687-725X
1687-7268
language eng
recordid cdi_proquest_journals_1983447872
source Wiley-Blackwell Open Access Titles; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Acoustic attenuation
Acoustic properties
Acoustics
Aircraft engines
Aluminum oxide
High temperature
Laser beam heating
Optics
Sapphire
Sensors
Single crystals
Sound transmission
Stability
Temperature sensors
Thermal conductivity
Thermometers
Ultrahigh temperature
Ultrasonic transducers
Velocity
Waveguides
title Research and Implementation of a 1800°C Sapphire Ultrasonic Thermometer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T18%3A28%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20and%20Implementation%20of%20a%201800%C2%B0C%20Sapphire%20Ultrasonic%20Thermometer&rft.jtitle=Journal%20of%20sensors&rft.au=Xue,%20Hongxin&rft.date=2017&rft.volume=2017&rft.issue=2017&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=1687-725X&rft.eissn=1687-7268&rft_id=info:doi/10.1155/2017/9710763&rft_dat=%3Cproquest_cross%3E1983447872%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1983447872&rft_id=info:pmid/&rfr_iscdi=true