One-pot synthesis of CTAB stabilized mesoporous cobalt doped CuS nano flower with enhanced pseudocapacitive behavior
In this study, we prepared porous CuS and Cobalt (Co) doped copper sulfide (CuS) nano flower by hydrothermal route. Cationic surfactant cetyl trimethyl ammonium bromide (CTAB) was used as stabilizer and copper nitrate, cobalt nitrate as precursors, thiourea as sulfur source and ethylene glycol as so...
Gespeichert in:
Veröffentlicht in: | Journal of materials science. Materials in electronics 2017-10, Vol.28 (20), p.15387-15397 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15397 |
---|---|
container_issue | 20 |
container_start_page | 15387 |
container_title | Journal of materials science. Materials in electronics |
container_volume | 28 |
creator | Podili, Surekha Geetha, D. Ramesh, P. S. |
description | In this study, we prepared porous CuS and Cobalt (Co) doped copper sulfide (CuS) nano flower by hydrothermal route. Cationic surfactant cetyl trimethyl ammonium bromide (CTAB) was used as stabilizer and copper nitrate, cobalt nitrate as precursors, thiourea as sulfur source and ethylene glycol as solvent. Structural, functional, optical properties, morphological, surface area and chemical nature of the as-synthesized samples were thoroughly characterized by XRD, FTIR, UV–Vis, SEM/EDS, TEM, BET and XPS techniques respectively. The optical band gap of CuS and Cobalt doped CuS nano flowers was estimated between 1.9 and 2.52 eV. The scanning electron microscopy and transmission electron microscopy images demonstrate flower like nanostructures with length around 140 nm. Then the synthesized samples were utilized for electrochemical performance to modify the glassy carbon electrode (GCE). The electrochemical performance of the as-synthesized CTAB/CuS and CTAB/Cobalt (0.15 mM) doped CuS material was studied by cyclic voltammetry and electrical impedance spectroscopy. These results demonstrate that CTAB/cobalt doped CuS electrode delivered a high specific capacitance of 586.45 Fg-1 in a2M KOH aqueous electrolyte at 5 mV/s and indicating their potential application as promising electrode materials for supercapacitors. |
doi_str_mv | 10.1007/s10854-017-7424-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1982276378</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1982276378</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-a9c9353277f6d851c2da39c641b49396002bffc995407414507166b15cebb19f3</originalsourceid><addsrcrecordid>eNp1kE1LwzAYx4MoOKcfwFvAczSvTXOcwzcY7OAEbyFNU9vRNTVJJ_PT21EPXjw9D8_zf4EfANcE3xKM5V0kOBccYSKR5JQjegJmREiGeE7fT8EMKyERF5Seg4sYtxjjjLN8BtK6c6j3CcZDl2oXmwh9BZebxT2MyRRN23y7Eu5c9L0PfojQ-sK0CZa-H-_L4RV2pvOwav2XC_CrSTV0XW06O3776IbSW9Mb26Rm72DharNvfLgEZ5Vpo7v6nXPw9viwWT6j1frpZblYIcsES8goq8aFSlllZS6IpaVhymacFFwxlWFMi6qySgmOJSdcYEmyrCDCuqIgqmJzcDPl9sF_Di4mvfVD6MZKTVROqcyYzEcVmVQ2-BiDq3Qfmp0JB02wPsLVE1w9wtVHuJqOHjp54qjtPlz4k_yv6Qd6yH1C</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1982276378</pqid></control><display><type>article</type><title>One-pot synthesis of CTAB stabilized mesoporous cobalt doped CuS nano flower with enhanced pseudocapacitive behavior</title><source>SpringerNature Journals</source><creator>Podili, Surekha ; Geetha, D. ; Ramesh, P. S.</creator><creatorcontrib>Podili, Surekha ; Geetha, D. ; Ramesh, P. S.</creatorcontrib><description>In this study, we prepared porous CuS and Cobalt (Co) doped copper sulfide (CuS) nano flower by hydrothermal route. Cationic surfactant cetyl trimethyl ammonium bromide (CTAB) was used as stabilizer and copper nitrate, cobalt nitrate as precursors, thiourea as sulfur source and ethylene glycol as solvent. Structural, functional, optical properties, morphological, surface area and chemical nature of the as-synthesized samples were thoroughly characterized by XRD, FTIR, UV–Vis, SEM/EDS, TEM, BET and XPS techniques respectively. The optical band gap of CuS and Cobalt doped CuS nano flowers was estimated between 1.9 and 2.52 eV. The scanning electron microscopy and transmission electron microscopy images demonstrate flower like nanostructures with length around 140 nm. Then the synthesized samples were utilized for electrochemical performance to modify the glassy carbon electrode (GCE). The electrochemical performance of the as-synthesized CTAB/CuS and CTAB/Cobalt (0.15 mM) doped CuS material was studied by cyclic voltammetry and electrical impedance spectroscopy. These results demonstrate that CTAB/cobalt doped CuS electrode delivered a high specific capacitance of 586.45 Fg-1 in a2M KOH aqueous electrolyte at 5 mV/s and indicating their potential application as promising electrode materials for supercapacitors.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-017-7424-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Aqueous electrolytes ; Cetyltrimethylammonium bromide ; Characterization and Evaluation of Materials ; Chemical synthesis ; Chemistry and Materials Science ; Cobalt ; Copper ; Copper sulfides ; Electrical impedance ; Electrochemical analysis ; Electrode materials ; Electrodes ; Electrons ; Ethylene glycol ; Flowers ; Glassy carbon ; Image transmission ; Materials Science ; Microscopy ; Optical and Electronic Materials ; Optical properties ; Organic chemistry ; Scanning electron microscopy ; Transmission electron microscopy ; X ray photoelectron spectroscopy</subject><ispartof>Journal of materials science. Materials in electronics, 2017-10, Vol.28 (20), p.15387-15397</ispartof><rights>Springer Science+Business Media, LLC 2017</rights><rights>Journal of Materials Science: Materials in Electronics is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-a9c9353277f6d851c2da39c641b49396002bffc995407414507166b15cebb19f3</citedby><cites>FETCH-LOGICAL-c353t-a9c9353277f6d851c2da39c641b49396002bffc995407414507166b15cebb19f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-017-7424-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-017-7424-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,782,786,27931,27932,41495,42564,51326</link.rule.ids></links><search><creatorcontrib>Podili, Surekha</creatorcontrib><creatorcontrib>Geetha, D.</creatorcontrib><creatorcontrib>Ramesh, P. S.</creatorcontrib><title>One-pot synthesis of CTAB stabilized mesoporous cobalt doped CuS nano flower with enhanced pseudocapacitive behavior</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>In this study, we prepared porous CuS and Cobalt (Co) doped copper sulfide (CuS) nano flower by hydrothermal route. Cationic surfactant cetyl trimethyl ammonium bromide (CTAB) was used as stabilizer and copper nitrate, cobalt nitrate as precursors, thiourea as sulfur source and ethylene glycol as solvent. Structural, functional, optical properties, morphological, surface area and chemical nature of the as-synthesized samples were thoroughly characterized by XRD, FTIR, UV–Vis, SEM/EDS, TEM, BET and XPS techniques respectively. The optical band gap of CuS and Cobalt doped CuS nano flowers was estimated between 1.9 and 2.52 eV. The scanning electron microscopy and transmission electron microscopy images demonstrate flower like nanostructures with length around 140 nm. Then the synthesized samples were utilized for electrochemical performance to modify the glassy carbon electrode (GCE). The electrochemical performance of the as-synthesized CTAB/CuS and CTAB/Cobalt (0.15 mM) doped CuS material was studied by cyclic voltammetry and electrical impedance spectroscopy. These results demonstrate that CTAB/cobalt doped CuS electrode delivered a high specific capacitance of 586.45 Fg-1 in a2M KOH aqueous electrolyte at 5 mV/s and indicating their potential application as promising electrode materials for supercapacitors.</description><subject>Aqueous electrolytes</subject><subject>Cetyltrimethylammonium bromide</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical synthesis</subject><subject>Chemistry and Materials Science</subject><subject>Cobalt</subject><subject>Copper</subject><subject>Copper sulfides</subject><subject>Electrical impedance</subject><subject>Electrochemical analysis</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Electrons</subject><subject>Ethylene glycol</subject><subject>Flowers</subject><subject>Glassy carbon</subject><subject>Image transmission</subject><subject>Materials Science</subject><subject>Microscopy</subject><subject>Optical and Electronic Materials</subject><subject>Optical properties</subject><subject>Organic chemistry</subject><subject>Scanning electron microscopy</subject><subject>Transmission electron microscopy</subject><subject>X ray photoelectron spectroscopy</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kE1LwzAYx4MoOKcfwFvAczSvTXOcwzcY7OAEbyFNU9vRNTVJJ_PT21EPXjw9D8_zf4EfANcE3xKM5V0kOBccYSKR5JQjegJmREiGeE7fT8EMKyERF5Seg4sYtxjjjLN8BtK6c6j3CcZDl2oXmwh9BZebxT2MyRRN23y7Eu5c9L0PfojQ-sK0CZa-H-_L4RV2pvOwav2XC_CrSTV0XW06O3776IbSW9Mb26Rm72DharNvfLgEZ5Vpo7v6nXPw9viwWT6j1frpZblYIcsES8goq8aFSlllZS6IpaVhymacFFwxlWFMi6qySgmOJSdcYEmyrCDCuqIgqmJzcDPl9sF_Di4mvfVD6MZKTVROqcyYzEcVmVQ2-BiDq3Qfmp0JB02wPsLVE1w9wtVHuJqOHjp54qjtPlz4k_yv6Qd6yH1C</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>Podili, Surekha</creator><creator>Geetha, D.</creator><creator>Ramesh, P. S.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope></search><sort><creationdate>20171001</creationdate><title>One-pot synthesis of CTAB stabilized mesoporous cobalt doped CuS nano flower with enhanced pseudocapacitive behavior</title><author>Podili, Surekha ; Geetha, D. ; Ramesh, P. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-a9c9353277f6d851c2da39c641b49396002bffc995407414507166b15cebb19f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aqueous electrolytes</topic><topic>Cetyltrimethylammonium bromide</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical synthesis</topic><topic>Chemistry and Materials Science</topic><topic>Cobalt</topic><topic>Copper</topic><topic>Copper sulfides</topic><topic>Electrical impedance</topic><topic>Electrochemical analysis</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Electrons</topic><topic>Ethylene glycol</topic><topic>Flowers</topic><topic>Glassy carbon</topic><topic>Image transmission</topic><topic>Materials Science</topic><topic>Microscopy</topic><topic>Optical and Electronic Materials</topic><topic>Optical properties</topic><topic>Organic chemistry</topic><topic>Scanning electron microscopy</topic><topic>Transmission electron microscopy</topic><topic>X ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Podili, Surekha</creatorcontrib><creatorcontrib>Geetha, D.</creatorcontrib><creatorcontrib>Ramesh, P. S.</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Podili, Surekha</au><au>Geetha, D.</au><au>Ramesh, P. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>One-pot synthesis of CTAB stabilized mesoporous cobalt doped CuS nano flower with enhanced pseudocapacitive behavior</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2017-10-01</date><risdate>2017</risdate><volume>28</volume><issue>20</issue><spage>15387</spage><epage>15397</epage><pages>15387-15397</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>In this study, we prepared porous CuS and Cobalt (Co) doped copper sulfide (CuS) nano flower by hydrothermal route. Cationic surfactant cetyl trimethyl ammonium bromide (CTAB) was used as stabilizer and copper nitrate, cobalt nitrate as precursors, thiourea as sulfur source and ethylene glycol as solvent. Structural, functional, optical properties, morphological, surface area and chemical nature of the as-synthesized samples were thoroughly characterized by XRD, FTIR, UV–Vis, SEM/EDS, TEM, BET and XPS techniques respectively. The optical band gap of CuS and Cobalt doped CuS nano flowers was estimated between 1.9 and 2.52 eV. The scanning electron microscopy and transmission electron microscopy images demonstrate flower like nanostructures with length around 140 nm. Then the synthesized samples were utilized for electrochemical performance to modify the glassy carbon electrode (GCE). The electrochemical performance of the as-synthesized CTAB/CuS and CTAB/Cobalt (0.15 mM) doped CuS material was studied by cyclic voltammetry and electrical impedance spectroscopy. These results demonstrate that CTAB/cobalt doped CuS electrode delivered a high specific capacitance of 586.45 Fg-1 in a2M KOH aqueous electrolyte at 5 mV/s and indicating their potential application as promising electrode materials for supercapacitors.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-017-7424-2</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4522 |
ispartof | Journal of materials science. Materials in electronics, 2017-10, Vol.28 (20), p.15387-15397 |
issn | 0957-4522 1573-482X |
language | eng |
recordid | cdi_proquest_journals_1982276378 |
source | SpringerNature Journals |
subjects | Aqueous electrolytes Cetyltrimethylammonium bromide Characterization and Evaluation of Materials Chemical synthesis Chemistry and Materials Science Cobalt Copper Copper sulfides Electrical impedance Electrochemical analysis Electrode materials Electrodes Electrons Ethylene glycol Flowers Glassy carbon Image transmission Materials Science Microscopy Optical and Electronic Materials Optical properties Organic chemistry Scanning electron microscopy Transmission electron microscopy X ray photoelectron spectroscopy |
title | One-pot synthesis of CTAB stabilized mesoporous cobalt doped CuS nano flower with enhanced pseudocapacitive behavior |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T04%3A08%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=One-pot%20synthesis%20of%20CTAB%20stabilized%20mesoporous%20cobalt%20doped%20CuS%20nano%20flower%20with%20enhanced%20pseudocapacitive%20behavior&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Podili,%20Surekha&rft.date=2017-10-01&rft.volume=28&rft.issue=20&rft.spage=15387&rft.epage=15397&rft.pages=15387-15397&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-017-7424-2&rft_dat=%3Cproquest_cross%3E1982276378%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1982276378&rft_id=info:pmid/&rfr_iscdi=true |