CoFe2O4–BaTiO3 multiferroic composites: role of ferrite and ferroelectric phases on the structural, magneto dielectric properties

Cobalt ferrite (CoFe 2 O 4 ) and Barium titanate (BaTiO 3 ) nanoparticles have been prepared by the microwave hydrothermal technique at 150 °C/60 min. The synthesized powders have been characterized using transmission electron microscopy, X-ray diffraction (XRD) and fourier transformation infrared s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science. Materials in electronics 2017-08, Vol.28 (16), p.11779-11788
Hauptverfasser: Ramesh, T., Rajendar, V., Murthy, S. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11788
container_issue 16
container_start_page 11779
container_title Journal of materials science. Materials in electronics
container_volume 28
creator Ramesh, T.
Rajendar, V.
Murthy, S. R.
description Cobalt ferrite (CoFe 2 O 4 ) and Barium titanate (BaTiO 3 ) nanoparticles have been prepared by the microwave hydrothermal technique at 150 °C/60 min. The synthesized powders have been characterized using transmission electron microscopy, X-ray diffraction (XRD) and fourier transformation infrared spectroscopy. The XRD analysis confirms the formation of desired phase with crystallite sizes 25 nm for CoFe 2 O 4 and 20 nm for BaTiO 3 . The prepared powders were mixed at different weight proportions to obtain nanocomposites of (1 − x)CoFe 2 O 4  + (x)BaTiO 3 (0 ≤ x ≤ 1) and densified at 910 °C/50 min via the microwave sintering process. The presence of two phases (CoFe 2 O 4 and BaTiO 3 ) was confirmed using XRD and field emission scanning electron microscopy (FESEM). Ferroelectric (P–E) and magnetic (M–H) hysteresis loops have been studied at room temperature. In P–E loops, the coercive field and remanent polarization show light asymmetric behaviour with an increase of CoFe 2 O 4 phase concentration. The M–H loops infer that the magnetic saturation of the composite samples drops with increasing of BaTiO 3 phase concentration. The frequency dependent permittivity and permeability properties have been measured over a wide frequency range (100 kHz–1.8 GHz). The static magneto-electric (ME) voltage coefficient (dE/dH) H is measured by vary in ME output voltage against the dc-bias magnetic field (H) at room temperature.
doi_str_mv 10.1007/s10854-017-6983-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1982274669</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1982274669</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-d0d2b56eb7c017d5dc1b94be1aee336b3571db3853a6e98e5d256d20e67699f13</originalsourceid><addsrcrecordid>eNp1kEtOwzAQhi0EEqVwAHaW2BLwI3YSdlBRQELqpkjsLCeetKmSONjOgh0SR-CGnASXIsGG1Yxmvn8eP0KnlFxQQrJLT0ku0oTQLJFFzhO5hyZUZDxJc_a8jyakEFmSCsYO0ZH3G0KITHk-Qe8zOwe2SD_fPm70sllw3I1taGpwzjYVrmw3WN8E8FfY2RawrfG2FytY9-Y7t9BCFVykh7X24LHtcVgD9sGNVRidbs9xp1c9BItN8ws7O4ALDfhjdFDr1sPJT5yip_ntcnafPC7uHmbXj0nFcxYSQwwrhYQyq-KbRpiKlkVaAtUAnMuSi4yakueCawlFDsIwIQ0jIDNZFDXlU3S2mxtXv4zgg9rY0fVxpaJFzliWSllEiu6oylnvHdRqcE2n3auiRG29VjuvVTxCbb1WMmrYTuMj26_A_Zn8r-gLSX2E6g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1982274669</pqid></control><display><type>article</type><title>CoFe2O4–BaTiO3 multiferroic composites: role of ferrite and ferroelectric phases on the structural, magneto dielectric properties</title><source>Springer Nature - Complete Springer Journals</source><creator>Ramesh, T. ; Rajendar, V. ; Murthy, S. R.</creator><creatorcontrib>Ramesh, T. ; Rajendar, V. ; Murthy, S. R.</creatorcontrib><description>Cobalt ferrite (CoFe 2 O 4 ) and Barium titanate (BaTiO 3 ) nanoparticles have been prepared by the microwave hydrothermal technique at 150 °C/60 min. The synthesized powders have been characterized using transmission electron microscopy, X-ray diffraction (XRD) and fourier transformation infrared spectroscopy. The XRD analysis confirms the formation of desired phase with crystallite sizes 25 nm for CoFe 2 O 4 and 20 nm for BaTiO 3 . The prepared powders were mixed at different weight proportions to obtain nanocomposites of (1 − x)CoFe 2 O 4  + (x)BaTiO 3 (0 ≤ x ≤ 1) and densified at 910 °C/50 min via the microwave sintering process. The presence of two phases (CoFe 2 O 4 and BaTiO 3 ) was confirmed using XRD and field emission scanning electron microscopy (FESEM). Ferroelectric (P–E) and magnetic (M–H) hysteresis loops have been studied at room temperature. In P–E loops, the coercive field and remanent polarization show light asymmetric behaviour with an increase of CoFe 2 O 4 phase concentration. The M–H loops infer that the magnetic saturation of the composite samples drops with increasing of BaTiO 3 phase concentration. The frequency dependent permittivity and permeability properties have been measured over a wide frequency range (100 kHz–1.8 GHz). The static magneto-electric (ME) voltage coefficient (dE/dH) H is measured by vary in ME output voltage against the dc-bias magnetic field (H) at room temperature.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-017-6983-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Barium ; Barium titanates ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Cobalt ; Cobalt ferrites ; Coercivity ; Composite materials ; Dielectric properties ; Electric potential ; Electron microscopy ; Ferroelectric materials ; Ferroelectricity ; Field emission microscopy ; Fourier transforms ; Hysteresis loops ; Infrared analysis ; Magnetic fields ; Magnetic permeability ; Magnetic properties ; Magnetic saturation ; Materials Science ; Microscopy ; Microwave sintering ; Multiferroic materials ; Nanocomposites ; Nitrates ; Optical and Electronic Materials ; Particle size ; Permeability ; Research methodology ; Spectrum analysis ; X-ray diffraction ; X-rays</subject><ispartof>Journal of materials science. Materials in electronics, 2017-08, Vol.28 (16), p.11779-11788</ispartof><rights>Springer Science+Business Media New York 2017</rights><rights>Journal of Materials Science: Materials in Electronics is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-d0d2b56eb7c017d5dc1b94be1aee336b3571db3853a6e98e5d256d20e67699f13</citedby><cites>FETCH-LOGICAL-c382t-d0d2b56eb7c017d5dc1b94be1aee336b3571db3853a6e98e5d256d20e67699f13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-017-6983-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-017-6983-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Ramesh, T.</creatorcontrib><creatorcontrib>Rajendar, V.</creatorcontrib><creatorcontrib>Murthy, S. R.</creatorcontrib><title>CoFe2O4–BaTiO3 multiferroic composites: role of ferrite and ferroelectric phases on the structural, magneto dielectric properties</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>Cobalt ferrite (CoFe 2 O 4 ) and Barium titanate (BaTiO 3 ) nanoparticles have been prepared by the microwave hydrothermal technique at 150 °C/60 min. The synthesized powders have been characterized using transmission electron microscopy, X-ray diffraction (XRD) and fourier transformation infrared spectroscopy. The XRD analysis confirms the formation of desired phase with crystallite sizes 25 nm for CoFe 2 O 4 and 20 nm for BaTiO 3 . The prepared powders were mixed at different weight proportions to obtain nanocomposites of (1 − x)CoFe 2 O 4  + (x)BaTiO 3 (0 ≤ x ≤ 1) and densified at 910 °C/50 min via the microwave sintering process. The presence of two phases (CoFe 2 O 4 and BaTiO 3 ) was confirmed using XRD and field emission scanning electron microscopy (FESEM). Ferroelectric (P–E) and magnetic (M–H) hysteresis loops have been studied at room temperature. In P–E loops, the coercive field and remanent polarization show light asymmetric behaviour with an increase of CoFe 2 O 4 phase concentration. The M–H loops infer that the magnetic saturation of the composite samples drops with increasing of BaTiO 3 phase concentration. The frequency dependent permittivity and permeability properties have been measured over a wide frequency range (100 kHz–1.8 GHz). The static magneto-electric (ME) voltage coefficient (dE/dH) H is measured by vary in ME output voltage against the dc-bias magnetic field (H) at room temperature.</description><subject>Barium</subject><subject>Barium titanates</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Cobalt</subject><subject>Cobalt ferrites</subject><subject>Coercivity</subject><subject>Composite materials</subject><subject>Dielectric properties</subject><subject>Electric potential</subject><subject>Electron microscopy</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>Field emission microscopy</subject><subject>Fourier transforms</subject><subject>Hysteresis loops</subject><subject>Infrared analysis</subject><subject>Magnetic fields</subject><subject>Magnetic permeability</subject><subject>Magnetic properties</subject><subject>Magnetic saturation</subject><subject>Materials Science</subject><subject>Microscopy</subject><subject>Microwave sintering</subject><subject>Multiferroic materials</subject><subject>Nanocomposites</subject><subject>Nitrates</subject><subject>Optical and Electronic Materials</subject><subject>Particle size</subject><subject>Permeability</subject><subject>Research methodology</subject><subject>Spectrum analysis</subject><subject>X-ray diffraction</subject><subject>X-rays</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kEtOwzAQhi0EEqVwAHaW2BLwI3YSdlBRQELqpkjsLCeetKmSONjOgh0SR-CGnASXIsGG1Yxmvn8eP0KnlFxQQrJLT0ku0oTQLJFFzhO5hyZUZDxJc_a8jyakEFmSCsYO0ZH3G0KITHk-Qe8zOwe2SD_fPm70sllw3I1taGpwzjYVrmw3WN8E8FfY2RawrfG2FytY9-Y7t9BCFVykh7X24LHtcVgD9sGNVRidbs9xp1c9BItN8ws7O4ALDfhjdFDr1sPJT5yip_ntcnafPC7uHmbXj0nFcxYSQwwrhYQyq-KbRpiKlkVaAtUAnMuSi4yakueCawlFDsIwIQ0jIDNZFDXlU3S2mxtXv4zgg9rY0fVxpaJFzliWSllEiu6oylnvHdRqcE2n3auiRG29VjuvVTxCbb1WMmrYTuMj26_A_Zn8r-gLSX2E6g</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Ramesh, T.</creator><creator>Rajendar, V.</creator><creator>Murthy, S. R.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope></search><sort><creationdate>20170801</creationdate><title>CoFe2O4–BaTiO3 multiferroic composites: role of ferrite and ferroelectric phases on the structural, magneto dielectric properties</title><author>Ramesh, T. ; Rajendar, V. ; Murthy, S. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-d0d2b56eb7c017d5dc1b94be1aee336b3571db3853a6e98e5d256d20e67699f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Barium</topic><topic>Barium titanates</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Cobalt</topic><topic>Cobalt ferrites</topic><topic>Coercivity</topic><topic>Composite materials</topic><topic>Dielectric properties</topic><topic>Electric potential</topic><topic>Electron microscopy</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>Field emission microscopy</topic><topic>Fourier transforms</topic><topic>Hysteresis loops</topic><topic>Infrared analysis</topic><topic>Magnetic fields</topic><topic>Magnetic permeability</topic><topic>Magnetic properties</topic><topic>Magnetic saturation</topic><topic>Materials Science</topic><topic>Microscopy</topic><topic>Microwave sintering</topic><topic>Multiferroic materials</topic><topic>Nanocomposites</topic><topic>Nitrates</topic><topic>Optical and Electronic Materials</topic><topic>Particle size</topic><topic>Permeability</topic><topic>Research methodology</topic><topic>Spectrum analysis</topic><topic>X-ray diffraction</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramesh, T.</creatorcontrib><creatorcontrib>Rajendar, V.</creatorcontrib><creatorcontrib>Murthy, S. R.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramesh, T.</au><au>Rajendar, V.</au><au>Murthy, S. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CoFe2O4–BaTiO3 multiferroic composites: role of ferrite and ferroelectric phases on the structural, magneto dielectric properties</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2017-08-01</date><risdate>2017</risdate><volume>28</volume><issue>16</issue><spage>11779</spage><epage>11788</epage><pages>11779-11788</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>Cobalt ferrite (CoFe 2 O 4 ) and Barium titanate (BaTiO 3 ) nanoparticles have been prepared by the microwave hydrothermal technique at 150 °C/60 min. The synthesized powders have been characterized using transmission electron microscopy, X-ray diffraction (XRD) and fourier transformation infrared spectroscopy. The XRD analysis confirms the formation of desired phase with crystallite sizes 25 nm for CoFe 2 O 4 and 20 nm for BaTiO 3 . The prepared powders were mixed at different weight proportions to obtain nanocomposites of (1 − x)CoFe 2 O 4  + (x)BaTiO 3 (0 ≤ x ≤ 1) and densified at 910 °C/50 min via the microwave sintering process. The presence of two phases (CoFe 2 O 4 and BaTiO 3 ) was confirmed using XRD and field emission scanning electron microscopy (FESEM). Ferroelectric (P–E) and magnetic (M–H) hysteresis loops have been studied at room temperature. In P–E loops, the coercive field and remanent polarization show light asymmetric behaviour with an increase of CoFe 2 O 4 phase concentration. The M–H loops infer that the magnetic saturation of the composite samples drops with increasing of BaTiO 3 phase concentration. The frequency dependent permittivity and permeability properties have been measured over a wide frequency range (100 kHz–1.8 GHz). The static magneto-electric (ME) voltage coefficient (dE/dH) H is measured by vary in ME output voltage against the dc-bias magnetic field (H) at room temperature.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-017-6983-6</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0957-4522
ispartof Journal of materials science. Materials in electronics, 2017-08, Vol.28 (16), p.11779-11788
issn 0957-4522
1573-482X
language eng
recordid cdi_proquest_journals_1982274669
source Springer Nature - Complete Springer Journals
subjects Barium
Barium titanates
Characterization and Evaluation of Materials
Chemistry and Materials Science
Cobalt
Cobalt ferrites
Coercivity
Composite materials
Dielectric properties
Electric potential
Electron microscopy
Ferroelectric materials
Ferroelectricity
Field emission microscopy
Fourier transforms
Hysteresis loops
Infrared analysis
Magnetic fields
Magnetic permeability
Magnetic properties
Magnetic saturation
Materials Science
Microscopy
Microwave sintering
Multiferroic materials
Nanocomposites
Nitrates
Optical and Electronic Materials
Particle size
Permeability
Research methodology
Spectrum analysis
X-ray diffraction
X-rays
title CoFe2O4–BaTiO3 multiferroic composites: role of ferrite and ferroelectric phases on the structural, magneto dielectric properties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T07%3A38%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CoFe2O4%E2%80%93BaTiO3%20multiferroic%20composites:%20role%20of%20ferrite%20and%20ferroelectric%20phases%20on%20the%20structural,%20magneto%20dielectric%20properties&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Ramesh,%20T.&rft.date=2017-08-01&rft.volume=28&rft.issue=16&rft.spage=11779&rft.epage=11788&rft.pages=11779-11788&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-017-6983-6&rft_dat=%3Cproquest_cross%3E1982274669%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1982274669&rft_id=info:pmid/&rfr_iscdi=true