A Decision Model for the Robot Selection Problem Using Robust Regression

Industrial robots are increasingly used by many manufacturing firms. The number of robot manufacturers has also increased with many of these firms now offering a wide range of models. A potential user is thus faced with many options in both performance and cost. This paper proposes a decision model...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Decision sciences 1991-07, Vol.22 (3), p.656-662
Hauptverfasser: Khouja, Moutaz, Booth, David E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 662
container_issue 3
container_start_page 656
container_title Decision sciences
container_volume 22
creator Khouja, Moutaz
Booth, David E.
description Industrial robots are increasingly used by many manufacturing firms. The number of robot manufacturers has also increased with many of these firms now offering a wide range of models. A potential user is thus faced with many options in both performance and cost. This paper proposes a decision model for the robot selection problem. The proposed model uses robust regression to identify, based on manufacturers' specifications, the robots that are the better performers for a given cost. Robust regression is used because it identifies and is resistant to the effects of outlying observations, key components in the proposed model. The robots selected by the model become candidates for testing to verify manufacturers' specifications. The model is tested on a real data set and an example is presented.
doi_str_mv 10.1111/j.1540-5915.1991.tb01288.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_198171153</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>345980</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3826-4b2bfdd5bc2a854270138f46d71b6829ef9688343a1b35aef9d627aaad2a08c33</originalsourceid><addsrcrecordid>eNqVkFtPgzAUxxujiXP6HcjewR5KS_HFLMNdzLxkuuyxKVAmyNbZsrh9eyEse_e8nJz8Lyf5ITQA7EEz96UHNMAujYB6EEXg1QkGn3PvcIF6Z-kS9TAGcEMC9BrdWFtijBkNSA9Nh06s0sIWeuu86ExVTq6NU38pZ6ETXTsfqlJp3arvRieV2jhLW2zXrbq3tbNQa6Nsm75FV7msrLo77T5ajp8-R1N3_jaZjYZzNyXcZ26Q-EmeZTRJfclp4IcYCM8DloWQMO5HKo8Y5yQgEhJCZXNmzA-llJkvMU8J6aNB17sz-mevbC1KvTfb5qWAiEMIQFvTQ2dKjbbWqFzsTLGR5igAixacKEVLR7R0RAtOnMCJQxN-7MK_RaWO_0iK-Gk0Y5Q1DW7XUNhaHc4N0nwLFpKQitXrRKw4j8dx-Cwi8gc0HoPo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>198171153</pqid></control><display><type>article</type><title>A Decision Model for the Robot Selection Problem Using Robust Regression</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Khouja, Moutaz ; Booth, David E.</creator><creatorcontrib>Khouja, Moutaz ; Booth, David E.</creatorcontrib><description>Industrial robots are increasingly used by many manufacturing firms. The number of robot manufacturers has also increased with many of these firms now offering a wide range of models. A potential user is thus faced with many options in both performance and cost. This paper proposes a decision model for the robot selection problem. The proposed model uses robust regression to identify, based on manufacturers' specifications, the robots that are the better performers for a given cost. Robust regression is used because it identifies and is resistant to the effects of outlying observations, key components in the proposed model. The robots selected by the model become candidates for testing to verify manufacturers' specifications. The model is tested on a real data set and an example is presented.</description><identifier>ISSN: 0011-7315</identifier><identifier>EISSN: 1540-5915</identifier><identifier>DOI: 10.1111/j.1540-5915.1991.tb01288.x</identifier><identifier>CODEN: DESCDQ</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Decision Analysis ; Decision making models ; Mathematical models ; Operations research ; Production/Operations Management ; Regression analysis ; Robots ; Specifications ; Statistical Techniques</subject><ispartof>Decision sciences, 1991-07, Vol.22 (3), p.656-662</ispartof><rights>Copyright American Institute for Decision Sciences Jul/Aug 1991</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3826-4b2bfdd5bc2a854270138f46d71b6829ef9688343a1b35aef9d627aaad2a08c33</citedby><cites>FETCH-LOGICAL-c3826-4b2bfdd5bc2a854270138f46d71b6829ef9688343a1b35aef9d627aaad2a08c33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1540-5915.1991.tb01288.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1540-5915.1991.tb01288.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Khouja, Moutaz</creatorcontrib><creatorcontrib>Booth, David E.</creatorcontrib><title>A Decision Model for the Robot Selection Problem Using Robust Regression</title><title>Decision sciences</title><description>Industrial robots are increasingly used by many manufacturing firms. The number of robot manufacturers has also increased with many of these firms now offering a wide range of models. A potential user is thus faced with many options in both performance and cost. This paper proposes a decision model for the robot selection problem. The proposed model uses robust regression to identify, based on manufacturers' specifications, the robots that are the better performers for a given cost. Robust regression is used because it identifies and is resistant to the effects of outlying observations, key components in the proposed model. The robots selected by the model become candidates for testing to verify manufacturers' specifications. The model is tested on a real data set and an example is presented.</description><subject>Decision Analysis</subject><subject>Decision making models</subject><subject>Mathematical models</subject><subject>Operations research</subject><subject>Production/Operations Management</subject><subject>Regression analysis</subject><subject>Robots</subject><subject>Specifications</subject><subject>Statistical Techniques</subject><issn>0011-7315</issn><issn>1540-5915</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqVkFtPgzAUxxujiXP6HcjewR5KS_HFLMNdzLxkuuyxKVAmyNbZsrh9eyEse_e8nJz8Lyf5ITQA7EEz96UHNMAujYB6EEXg1QkGn3PvcIF6Z-kS9TAGcEMC9BrdWFtijBkNSA9Nh06s0sIWeuu86ExVTq6NU38pZ6ETXTsfqlJp3arvRieV2jhLW2zXrbq3tbNQa6Nsm75FV7msrLo77T5ajp8-R1N3_jaZjYZzNyXcZ26Q-EmeZTRJfclp4IcYCM8DloWQMO5HKo8Y5yQgEhJCZXNmzA-llJkvMU8J6aNB17sz-mevbC1KvTfb5qWAiEMIQFvTQ2dKjbbWqFzsTLGR5igAixacKEVLR7R0RAtOnMCJQxN-7MK_RaWO_0iK-Gk0Y5Q1DW7XUNhaHc4N0nwLFpKQitXrRKw4j8dx-Cwi8gc0HoPo</recordid><startdate>199107</startdate><enddate>199107</enddate><creator>Khouja, Moutaz</creator><creator>Booth, David E.</creator><general>Blackwell Publishing Ltd</general><general>American Institute for Decision Sciences</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AF</scope><scope>8BJ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JBE</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M2P</scope><scope>M7S</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>199107</creationdate><title>A Decision Model for the Robot Selection Problem Using Robust Regression</title><author>Khouja, Moutaz ; Booth, David E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3826-4b2bfdd5bc2a854270138f46d71b6829ef9688343a1b35aef9d627aaad2a08c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><topic>Decision Analysis</topic><topic>Decision making models</topic><topic>Mathematical models</topic><topic>Operations research</topic><topic>Production/Operations Management</topic><topic>Regression analysis</topic><topic>Robots</topic><topic>Specifications</topic><topic>Statistical Techniques</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khouja, Moutaz</creatorcontrib><creatorcontrib>Booth, David E.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Decision sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khouja, Moutaz</au><au>Booth, David E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Decision Model for the Robot Selection Problem Using Robust Regression</atitle><jtitle>Decision sciences</jtitle><date>1991-07</date><risdate>1991</risdate><volume>22</volume><issue>3</issue><spage>656</spage><epage>662</epage><pages>656-662</pages><issn>0011-7315</issn><eissn>1540-5915</eissn><coden>DESCDQ</coden><abstract>Industrial robots are increasingly used by many manufacturing firms. The number of robot manufacturers has also increased with many of these firms now offering a wide range of models. A potential user is thus faced with many options in both performance and cost. This paper proposes a decision model for the robot selection problem. The proposed model uses robust regression to identify, based on manufacturers' specifications, the robots that are the better performers for a given cost. Robust regression is used because it identifies and is resistant to the effects of outlying observations, key components in the proposed model. The robots selected by the model become candidates for testing to verify manufacturers' specifications. The model is tested on a real data set and an example is presented.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1540-5915.1991.tb01288.x</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0011-7315
ispartof Decision sciences, 1991-07, Vol.22 (3), p.656-662
issn 0011-7315
1540-5915
language eng
recordid cdi_proquest_journals_198171153
source Wiley Online Library Journals Frontfile Complete
subjects Decision Analysis
Decision making models
Mathematical models
Operations research
Production/Operations Management
Regression analysis
Robots
Specifications
Statistical Techniques
title A Decision Model for the Robot Selection Problem Using Robust Regression
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T11%3A43%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Decision%20Model%20for%20the%20Robot%20Selection%20Problem%20Using%20Robust%20Regression&rft.jtitle=Decision%20sciences&rft.au=Khouja,%20Moutaz&rft.date=1991-07&rft.volume=22&rft.issue=3&rft.spage=656&rft.epage=662&rft.pages=656-662&rft.issn=0011-7315&rft.eissn=1540-5915&rft.coden=DESCDQ&rft_id=info:doi/10.1111/j.1540-5915.1991.tb01288.x&rft_dat=%3Cproquest_cross%3E345980%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=198171153&rft_id=info:pmid/&rfr_iscdi=true