Silver (nano)materials cause genotoxicity in Enchytraeus crypticus, as determined by the comet assay
Enchytraeids have been used in standard ecotoxicity testing for approximately 20 yr. Since adopting the standard test for survival and reproduction, a number of additional tools have been developed, including transcriptomics and enzymatic biomarkers. So far, a genotoxicity tool and endpoint have not...
Gespeichert in:
Veröffentlicht in: | Environmental toxicology and chemistry 2018-01, Vol.37 (1), p.184-191 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 191 |
---|---|
container_issue | 1 |
container_start_page | 184 |
container_title | Environmental toxicology and chemistry |
container_volume | 37 |
creator | Maria, Vera L. Ribeiro, Maria João Guilherme, Sofia Soares, Amadeu M.V.M. Scott‐Fordsmand, Janeck J. Amorim, Mónica J.B. |
description | Enchytraeids have been used in standard ecotoxicity testing for approximately 20 yr. Since adopting the standard test for survival and reproduction, a number of additional tools have been developed, including transcriptomics and enzymatic biomarkers. So far, a genotoxicity tool and endpoint have not been used; hence, the goals of the present study included optimization of the in vivo alkaline comet assay in Enchytraeus crypticus. Further, the effect of silver nanomaterial (Ag NM300K, dispersed, 15 nm) was tested and compared with silver nitrate. Hydrogen peroxide was used as a positive control. The various steps were optimized. The fully detailed standard operating procedure is presented. Silver materials caused genotoxicity, this being differentiated for the nano and non‐nano forms. Silver nitrate caused genotoxicity after 3 d of exposure in a dose‐related manner, although after 7 d the effects were either reduced or repaired. Ag NM300K caused higher genotoxicity after 7 d for the lowest concentration, highlighting a potential nonmonotonic dose–response effect. Overall, the comet assay showed the power to discriminate effects between materials and also toxicity at low relevant doses. Environ Toxicol Chem 2018;37:184–191. © 2017 SETAC |
doi_str_mv | 10.1002/etc.3944 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1981061194</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1981061194</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3864-a90aeaf2677f4a27386b8a5b4c0cbd04c894830c15ed05cc00da2767491accda3</originalsourceid><addsrcrecordid>eNp1kF1LwzAUQIMobk7BXyABXybYmbRpmjzKmB8w8EF9Dml65zLWdiap2n9v5qZvPgVuzj0XDkLnlEwoIekNBDPJJGMHaEjzPE0Ep-IQDUmRkaRIuRigE-9XhFAupTxGg1QUkmeMDlH1bNcf4PC40U17VesAzuq1x0Z3HvAbNG1ov6yxoce2wbPGLPvgNHSRcP0mWNP5a6w9riBu1raBCpc9DkvApq0hxC-v-1N0tIhSONu_I_R6N3uZPiTzp_vH6e08MZngLNGSaNCLlBfFgum0iMNS6LxkhpiyIswIyURGDM2hIrkxhFSR4gWTVBtT6WyELnfejWvfO_BBrdrONfGkolJQwimVLFLjHWVc672Dhdo4W2vXK0rUNqeKOdU2Z0Qv9sKurKH6A3_7RSDZAZ92Df2_IhWZH-E3Rhd_Yw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1981061194</pqid></control><display><type>article</type><title>Silver (nano)materials cause genotoxicity in Enchytraeus crypticus, as determined by the comet assay</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Maria, Vera L. ; Ribeiro, Maria João ; Guilherme, Sofia ; Soares, Amadeu M.V.M. ; Scott‐Fordsmand, Janeck J. ; Amorim, Mónica J.B.</creator><creatorcontrib>Maria, Vera L. ; Ribeiro, Maria João ; Guilherme, Sofia ; Soares, Amadeu M.V.M. ; Scott‐Fordsmand, Janeck J. ; Amorim, Mónica J.B.</creatorcontrib><description>Enchytraeids have been used in standard ecotoxicity testing for approximately 20 yr. Since adopting the standard test for survival and reproduction, a number of additional tools have been developed, including transcriptomics and enzymatic biomarkers. So far, a genotoxicity tool and endpoint have not been used; hence, the goals of the present study included optimization of the in vivo alkaline comet assay in Enchytraeus crypticus. Further, the effect of silver nanomaterial (Ag NM300K, dispersed, 15 nm) was tested and compared with silver nitrate. Hydrogen peroxide was used as a positive control. The various steps were optimized. The fully detailed standard operating procedure is presented. Silver materials caused genotoxicity, this being differentiated for the nano and non‐nano forms. Silver nitrate caused genotoxicity after 3 d of exposure in a dose‐related manner, although after 7 d the effects were either reduced or repaired. Ag NM300K caused higher genotoxicity after 7 d for the lowest concentration, highlighting a potential nonmonotonic dose–response effect. Overall, the comet assay showed the power to discriminate effects between materials and also toxicity at low relevant doses. Environ Toxicol Chem 2018;37:184–191. © 2017 SETAC</description><identifier>ISSN: 0730-7268</identifier><identifier>EISSN: 1552-8618</identifier><identifier>DOI: 10.1002/etc.3944</identifier><identifier>PMID: 28796341</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Bioassays ; Biocompatibility ; Biomarkers ; Comet assay ; Damage detection ; Enchytraeus crypticus ; Genetic damage indicator (GDI) ; Genotoxicity ; Hydrogen peroxide ; In vivo methods and tests ; Metallic nanoparticle ; Nanomaterials ; Silver ; Silver nitrate ; Single‐cell gel electrophoresis (SCGE) ; Soil invertebrate ; Toxicity ; Toxicity testing</subject><ispartof>Environmental toxicology and chemistry, 2018-01, Vol.37 (1), p.184-191</ispartof><rights>2017 SETAC</rights><rights>2017 SETAC.</rights><rights>2018 SETAC</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3864-a90aeaf2677f4a27386b8a5b4c0cbd04c894830c15ed05cc00da2767491accda3</citedby><cites>FETCH-LOGICAL-c3864-a90aeaf2677f4a27386b8a5b4c0cbd04c894830c15ed05cc00da2767491accda3</cites><orcidid>0000-0002-0331-3489</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fetc.3944$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fetc.3944$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28796341$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Maria, Vera L.</creatorcontrib><creatorcontrib>Ribeiro, Maria João</creatorcontrib><creatorcontrib>Guilherme, Sofia</creatorcontrib><creatorcontrib>Soares, Amadeu M.V.M.</creatorcontrib><creatorcontrib>Scott‐Fordsmand, Janeck J.</creatorcontrib><creatorcontrib>Amorim, Mónica J.B.</creatorcontrib><title>Silver (nano)materials cause genotoxicity in Enchytraeus crypticus, as determined by the comet assay</title><title>Environmental toxicology and chemistry</title><addtitle>Environ Toxicol Chem</addtitle><description>Enchytraeids have been used in standard ecotoxicity testing for approximately 20 yr. Since adopting the standard test for survival and reproduction, a number of additional tools have been developed, including transcriptomics and enzymatic biomarkers. So far, a genotoxicity tool and endpoint have not been used; hence, the goals of the present study included optimization of the in vivo alkaline comet assay in Enchytraeus crypticus. Further, the effect of silver nanomaterial (Ag NM300K, dispersed, 15 nm) was tested and compared with silver nitrate. Hydrogen peroxide was used as a positive control. The various steps were optimized. The fully detailed standard operating procedure is presented. Silver materials caused genotoxicity, this being differentiated for the nano and non‐nano forms. Silver nitrate caused genotoxicity after 3 d of exposure in a dose‐related manner, although after 7 d the effects were either reduced or repaired. Ag NM300K caused higher genotoxicity after 7 d for the lowest concentration, highlighting a potential nonmonotonic dose–response effect. Overall, the comet assay showed the power to discriminate effects between materials and also toxicity at low relevant doses. Environ Toxicol Chem 2018;37:184–191. © 2017 SETAC</description><subject>Bioassays</subject><subject>Biocompatibility</subject><subject>Biomarkers</subject><subject>Comet assay</subject><subject>Damage detection</subject><subject>Enchytraeus crypticus</subject><subject>Genetic damage indicator (GDI)</subject><subject>Genotoxicity</subject><subject>Hydrogen peroxide</subject><subject>In vivo methods and tests</subject><subject>Metallic nanoparticle</subject><subject>Nanomaterials</subject><subject>Silver</subject><subject>Silver nitrate</subject><subject>Single‐cell gel electrophoresis (SCGE)</subject><subject>Soil invertebrate</subject><subject>Toxicity</subject><subject>Toxicity testing</subject><issn>0730-7268</issn><issn>1552-8618</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kF1LwzAUQIMobk7BXyABXybYmbRpmjzKmB8w8EF9Dml65zLWdiap2n9v5qZvPgVuzj0XDkLnlEwoIekNBDPJJGMHaEjzPE0Ep-IQDUmRkaRIuRigE-9XhFAupTxGg1QUkmeMDlH1bNcf4PC40U17VesAzuq1x0Z3HvAbNG1ov6yxoce2wbPGLPvgNHSRcP0mWNP5a6w9riBu1raBCpc9DkvApq0hxC-v-1N0tIhSONu_I_R6N3uZPiTzp_vH6e08MZngLNGSaNCLlBfFgum0iMNS6LxkhpiyIswIyURGDM2hIrkxhFSR4gWTVBtT6WyELnfejWvfO_BBrdrONfGkolJQwimVLFLjHWVc672Dhdo4W2vXK0rUNqeKOdU2Z0Qv9sKurKH6A3_7RSDZAZ92Df2_IhWZH-E3Rhd_Yw</recordid><startdate>201801</startdate><enddate>201801</enddate><creator>Maria, Vera L.</creator><creator>Ribeiro, Maria João</creator><creator>Guilherme, Sofia</creator><creator>Soares, Amadeu M.V.M.</creator><creator>Scott‐Fordsmand, Janeck J.</creator><creator>Amorim, Mónica J.B.</creator><general>Blackwell Publishing Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-0331-3489</orcidid></search><sort><creationdate>201801</creationdate><title>Silver (nano)materials cause genotoxicity in Enchytraeus crypticus, as determined by the comet assay</title><author>Maria, Vera L. ; Ribeiro, Maria João ; Guilherme, Sofia ; Soares, Amadeu M.V.M. ; Scott‐Fordsmand, Janeck J. ; Amorim, Mónica J.B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3864-a90aeaf2677f4a27386b8a5b4c0cbd04c894830c15ed05cc00da2767491accda3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bioassays</topic><topic>Biocompatibility</topic><topic>Biomarkers</topic><topic>Comet assay</topic><topic>Damage detection</topic><topic>Enchytraeus crypticus</topic><topic>Genetic damage indicator (GDI)</topic><topic>Genotoxicity</topic><topic>Hydrogen peroxide</topic><topic>In vivo methods and tests</topic><topic>Metallic nanoparticle</topic><topic>Nanomaterials</topic><topic>Silver</topic><topic>Silver nitrate</topic><topic>Single‐cell gel electrophoresis (SCGE)</topic><topic>Soil invertebrate</topic><topic>Toxicity</topic><topic>Toxicity testing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maria, Vera L.</creatorcontrib><creatorcontrib>Ribeiro, Maria João</creatorcontrib><creatorcontrib>Guilherme, Sofia</creatorcontrib><creatorcontrib>Soares, Amadeu M.V.M.</creatorcontrib><creatorcontrib>Scott‐Fordsmand, Janeck J.</creatorcontrib><creatorcontrib>Amorim, Mónica J.B.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Environmental toxicology and chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maria, Vera L.</au><au>Ribeiro, Maria João</au><au>Guilherme, Sofia</au><au>Soares, Amadeu M.V.M.</au><au>Scott‐Fordsmand, Janeck J.</au><au>Amorim, Mónica J.B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Silver (nano)materials cause genotoxicity in Enchytraeus crypticus, as determined by the comet assay</atitle><jtitle>Environmental toxicology and chemistry</jtitle><addtitle>Environ Toxicol Chem</addtitle><date>2018-01</date><risdate>2018</risdate><volume>37</volume><issue>1</issue><spage>184</spage><epage>191</epage><pages>184-191</pages><issn>0730-7268</issn><eissn>1552-8618</eissn><abstract>Enchytraeids have been used in standard ecotoxicity testing for approximately 20 yr. Since adopting the standard test for survival and reproduction, a number of additional tools have been developed, including transcriptomics and enzymatic biomarkers. So far, a genotoxicity tool and endpoint have not been used; hence, the goals of the present study included optimization of the in vivo alkaline comet assay in Enchytraeus crypticus. Further, the effect of silver nanomaterial (Ag NM300K, dispersed, 15 nm) was tested and compared with silver nitrate. Hydrogen peroxide was used as a positive control. The various steps were optimized. The fully detailed standard operating procedure is presented. Silver materials caused genotoxicity, this being differentiated for the nano and non‐nano forms. Silver nitrate caused genotoxicity after 3 d of exposure in a dose‐related manner, although after 7 d the effects were either reduced or repaired. Ag NM300K caused higher genotoxicity after 7 d for the lowest concentration, highlighting a potential nonmonotonic dose–response effect. Overall, the comet assay showed the power to discriminate effects between materials and also toxicity at low relevant doses. Environ Toxicol Chem 2018;37:184–191. © 2017 SETAC</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>28796341</pmid><doi>10.1002/etc.3944</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-0331-3489</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0730-7268 |
ispartof | Environmental toxicology and chemistry, 2018-01, Vol.37 (1), p.184-191 |
issn | 0730-7268 1552-8618 |
language | eng |
recordid | cdi_proquest_journals_1981061194 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Bioassays Biocompatibility Biomarkers Comet assay Damage detection Enchytraeus crypticus Genetic damage indicator (GDI) Genotoxicity Hydrogen peroxide In vivo methods and tests Metallic nanoparticle Nanomaterials Silver Silver nitrate Single‐cell gel electrophoresis (SCGE) Soil invertebrate Toxicity Toxicity testing |
title | Silver (nano)materials cause genotoxicity in Enchytraeus crypticus, as determined by the comet assay |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T08%3A18%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Silver%20(nano)materials%20cause%20genotoxicity%20in%20Enchytraeus%20crypticus,%20as%20determined%20by%20the%20comet%20assay&rft.jtitle=Environmental%20toxicology%20and%20chemistry&rft.au=Maria,%20Vera%20L.&rft.date=2018-01&rft.volume=37&rft.issue=1&rft.spage=184&rft.epage=191&rft.pages=184-191&rft.issn=0730-7268&rft.eissn=1552-8618&rft_id=info:doi/10.1002/etc.3944&rft_dat=%3Cproquest_cross%3E1981061194%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1981061194&rft_id=info:pmid/28796341&rfr_iscdi=true |