Blind Thrusting, Surface Folding, and the Development of Geological Structure in the Mw 6.3 2015 Pishan (China) Earthquake
The relationship between individual earthquakes and the longer‐term growth of topography and of geological structures is not fully understood, but is key to our ability to make use of topographic and geological data sets in the contexts of seismic hazard and wider‐scale tectonics. Here we investigat...
Gespeichert in:
Veröffentlicht in: | Journal of geophysical research. Solid earth 2017-11, Vol.122 (11), p.9359-9382 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9382 |
---|---|
container_issue | 11 |
container_start_page | 9359 |
container_title | Journal of geophysical research. Solid earth |
container_volume | 122 |
creator | Ainscoe, E. A. Elliott, J. R. Copley, A. Craig, T. J. Li, T. Parsons, B. E. Walker, R. T. |
description | The relationship between individual earthquakes and the longer‐term growth of topography and of geological structures is not fully understood, but is key to our ability to make use of topographic and geological data sets in the contexts of seismic hazard and wider‐scale tectonics. Here we investigate those relationships at an active fold‐and‐thrust belt in the southwest Tarim Basin, Central Asia. We use seismic waveforms and interferometric synthetic aperture radar (InSAR) to determine the fault parameters and slip distribution of the 2015 Mw6.3 Pishan earthquake—a blind, reverse‐faulting event dipping toward the Tibetan Plateau. Our earthquake mechanism and location correspond closely to a fault mapped independently by seismic reflection, indicating that the earthquake was on a preexisting ramp fault over a depth range of ∼9–13 km. However, the geometry of folding in the overlying fluvial terraces cannot be fully explained by repeated coseismic slip in events such as the 2015 earthquake nor by the early postseismic motion shown in our interferograms; a key role in growth of the topography must be played by other mechanisms. The earthquake occurred at the Tarim‐Tibet boundary, with the unusually low dip of 21°. We use our source models from Pishan and a 2012 event to argue that the Tarim Basin crust deforms only by brittle failure on faults whose effective coefficient of friction is ≤0.05 ± 0.025. In contrast, most of the Tibetan crust undergoes ductile deformation, with a viscosity of order 1020–1022 Pa s. This contrast in rheologies provides an explanation for the low dip of the earthquake fault plane.
Key Points
Coseismic fault geometry and location closely match a preexisting blind fault
Quaternary fold grows by distributed deformation in the overlying sediments and does not align with coseismic or early postseismic uplift
Rheology contrast between the Tarim Basin and Tibet may explain the earthquake's low dip angle |
doi_str_mv | 10.1002/2017JB014268 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_1980969645</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1980969645</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1801-d8a8b2bb22b6fdb1016e7eecd41b27d853ce9bdb776ab59347645fda6a817ca13</originalsourceid><addsrcrecordid>eNpNkF1PwjAUhhujiQS58wc08UYThz3t1rWXgoASjEbwemnXjg3HBt0mwV_vBGM8N-fkPc_5yIvQJZA-EELvKIFwOiDgUy5OUIcCl55kAT_9q4Gdo15VrUgbopXA76CvQZ4VBi9S11R1Vixv8bxxiYotHpe5OQiq7depxQ_20-blZm2LGpcJntgyL5dZrHI8r10T142zOCsO6PMO8z7D7UsBfs2qVBX4ephmhbrBI-XqdNuoD3uBzhKVV7b3m7vofTxaDB-92cvkaXg_8zYgCHhGKKGp1pRqnhgNBLgNrY2ND5qGRgQstlIbHYZc6UAyP-R-kBjFlYAwVsC66Oq4d-PKbWOrOlqVjSvakxFIQSSX7UBLsSO1y3K7jzYuWyu3j4BEP-5G_92NppO3QUCZBPYNqHhs8w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1980969645</pqid></control><display><type>article</type><title>Blind Thrusting, Surface Folding, and the Development of Geological Structure in the Mw 6.3 2015 Pishan (China) Earthquake</title><source>Access via Wiley Online Library</source><source>Wiley Online Library (Open Access Collection)</source><creator>Ainscoe, E. A. ; Elliott, J. R. ; Copley, A. ; Craig, T. J. ; Li, T. ; Parsons, B. E. ; Walker, R. T.</creator><creatorcontrib>Ainscoe, E. A. ; Elliott, J. R. ; Copley, A. ; Craig, T. J. ; Li, T. ; Parsons, B. E. ; Walker, R. T.</creatorcontrib><description>The relationship between individual earthquakes and the longer‐term growth of topography and of geological structures is not fully understood, but is key to our ability to make use of topographic and geological data sets in the contexts of seismic hazard and wider‐scale tectonics. Here we investigate those relationships at an active fold‐and‐thrust belt in the southwest Tarim Basin, Central Asia. We use seismic waveforms and interferometric synthetic aperture radar (InSAR) to determine the fault parameters and slip distribution of the 2015 Mw6.3 Pishan earthquake—a blind, reverse‐faulting event dipping toward the Tibetan Plateau. Our earthquake mechanism and location correspond closely to a fault mapped independently by seismic reflection, indicating that the earthquake was on a preexisting ramp fault over a depth range of ∼9–13 km. However, the geometry of folding in the overlying fluvial terraces cannot be fully explained by repeated coseismic slip in events such as the 2015 earthquake nor by the early postseismic motion shown in our interferograms; a key role in growth of the topography must be played by other mechanisms. The earthquake occurred at the Tarim‐Tibet boundary, with the unusually low dip of 21°. We use our source models from Pishan and a 2012 event to argue that the Tarim Basin crust deforms only by brittle failure on faults whose effective coefficient of friction is ≤0.05 ± 0.025. In contrast, most of the Tibetan crust undergoes ductile deformation, with a viscosity of order 1020–1022 Pa s. This contrast in rheologies provides an explanation for the low dip of the earthquake fault plane.
Key Points
Coseismic fault geometry and location closely match a preexisting blind fault
Quaternary fold grows by distributed deformation in the overlying sediments and does not align with coseismic or early postseismic uplift
Rheology contrast between the Tarim Basin and Tibet may explain the earthquake's low dip angle</description><identifier>ISSN: 2169-9313</identifier><identifier>EISSN: 2169-9356</identifier><identifier>DOI: 10.1002/2017JB014268</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Banks (topography) ; Coefficient of friction ; continental rheology ; Deformation ; Deformation effects ; Deformation mechanisms ; Dipping ; Earthquakes ; Fault lines ; Faults ; Folding ; fold‐and‐thrust ; Geological data ; Geological faults ; Geological hazards ; Geological structures ; Geology ; Geophysics ; growth of topography ; InSAR ; Interferometric synthetic aperture radar ; Interferometry ; Pishan ; Plateaus ; Quaternary ; Radar ; Rheological properties ; Rheology ; SAR (radar) ; Sediments ; Seismic activity ; seismic cycle ; Seismic hazard ; Seismic surveys ; Seismic waves ; Slip ; Slope ; Synthetic aperture radar ; Synthetic aperture radar interferometry ; Tectonics ; Terraces ; Topography ; Topography (geology) ; Uplift ; Viscosity ; Waveforms</subject><ispartof>Journal of geophysical research. Solid earth, 2017-11, Vol.122 (11), p.9359-9382</ispartof><rights>2017. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-2198-9172 ; 0000-0001-8190-1676 ; 0000-0003-2957-4596 ; 0000-0002-3563-8245 ; 0000-0002-7551-4124</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2017JB014268$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2017JB014268$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids></links><search><creatorcontrib>Ainscoe, E. A.</creatorcontrib><creatorcontrib>Elliott, J. R.</creatorcontrib><creatorcontrib>Copley, A.</creatorcontrib><creatorcontrib>Craig, T. J.</creatorcontrib><creatorcontrib>Li, T.</creatorcontrib><creatorcontrib>Parsons, B. E.</creatorcontrib><creatorcontrib>Walker, R. T.</creatorcontrib><title>Blind Thrusting, Surface Folding, and the Development of Geological Structure in the Mw 6.3 2015 Pishan (China) Earthquake</title><title>Journal of geophysical research. Solid earth</title><description>The relationship between individual earthquakes and the longer‐term growth of topography and of geological structures is not fully understood, but is key to our ability to make use of topographic and geological data sets in the contexts of seismic hazard and wider‐scale tectonics. Here we investigate those relationships at an active fold‐and‐thrust belt in the southwest Tarim Basin, Central Asia. We use seismic waveforms and interferometric synthetic aperture radar (InSAR) to determine the fault parameters and slip distribution of the 2015 Mw6.3 Pishan earthquake—a blind, reverse‐faulting event dipping toward the Tibetan Plateau. Our earthquake mechanism and location correspond closely to a fault mapped independently by seismic reflection, indicating that the earthquake was on a preexisting ramp fault over a depth range of ∼9–13 km. However, the geometry of folding in the overlying fluvial terraces cannot be fully explained by repeated coseismic slip in events such as the 2015 earthquake nor by the early postseismic motion shown in our interferograms; a key role in growth of the topography must be played by other mechanisms. The earthquake occurred at the Tarim‐Tibet boundary, with the unusually low dip of 21°. We use our source models from Pishan and a 2012 event to argue that the Tarim Basin crust deforms only by brittle failure on faults whose effective coefficient of friction is ≤0.05 ± 0.025. In contrast, most of the Tibetan crust undergoes ductile deformation, with a viscosity of order 1020–1022 Pa s. This contrast in rheologies provides an explanation for the low dip of the earthquake fault plane.
Key Points
Coseismic fault geometry and location closely match a preexisting blind fault
Quaternary fold grows by distributed deformation in the overlying sediments and does not align with coseismic or early postseismic uplift
Rheology contrast between the Tarim Basin and Tibet may explain the earthquake's low dip angle</description><subject>Banks (topography)</subject><subject>Coefficient of friction</subject><subject>continental rheology</subject><subject>Deformation</subject><subject>Deformation effects</subject><subject>Deformation mechanisms</subject><subject>Dipping</subject><subject>Earthquakes</subject><subject>Fault lines</subject><subject>Faults</subject><subject>Folding</subject><subject>fold‐and‐thrust</subject><subject>Geological data</subject><subject>Geological faults</subject><subject>Geological hazards</subject><subject>Geological structures</subject><subject>Geology</subject><subject>Geophysics</subject><subject>growth of topography</subject><subject>InSAR</subject><subject>Interferometric synthetic aperture radar</subject><subject>Interferometry</subject><subject>Pishan</subject><subject>Plateaus</subject><subject>Quaternary</subject><subject>Radar</subject><subject>Rheological properties</subject><subject>Rheology</subject><subject>SAR (radar)</subject><subject>Sediments</subject><subject>Seismic activity</subject><subject>seismic cycle</subject><subject>Seismic hazard</subject><subject>Seismic surveys</subject><subject>Seismic waves</subject><subject>Slip</subject><subject>Slope</subject><subject>Synthetic aperture radar</subject><subject>Synthetic aperture radar interferometry</subject><subject>Tectonics</subject><subject>Terraces</subject><subject>Topography</subject><subject>Topography (geology)</subject><subject>Uplift</subject><subject>Viscosity</subject><subject>Waveforms</subject><issn>2169-9313</issn><issn>2169-9356</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpNkF1PwjAUhhujiQS58wc08UYThz3t1rWXgoASjEbwemnXjg3HBt0mwV_vBGM8N-fkPc_5yIvQJZA-EELvKIFwOiDgUy5OUIcCl55kAT_9q4Gdo15VrUgbopXA76CvQZ4VBi9S11R1Vixv8bxxiYotHpe5OQiq7depxQ_20-blZm2LGpcJntgyL5dZrHI8r10T142zOCsO6PMO8z7D7UsBfs2qVBX4ephmhbrBI-XqdNuoD3uBzhKVV7b3m7vofTxaDB-92cvkaXg_8zYgCHhGKKGp1pRqnhgNBLgNrY2ND5qGRgQstlIbHYZc6UAyP-R-kBjFlYAwVsC66Oq4d-PKbWOrOlqVjSvakxFIQSSX7UBLsSO1y3K7jzYuWyu3j4BEP-5G_92NppO3QUCZBPYNqHhs8w</recordid><startdate>201711</startdate><enddate>201711</enddate><creator>Ainscoe, E. A.</creator><creator>Elliott, J. R.</creator><creator>Copley, A.</creator><creator>Craig, T. J.</creator><creator>Li, T.</creator><creator>Parsons, B. E.</creator><creator>Walker, R. T.</creator><general>Blackwell Publishing Ltd</general><scope>7ST</scope><scope>7TG</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-2198-9172</orcidid><orcidid>https://orcid.org/0000-0001-8190-1676</orcidid><orcidid>https://orcid.org/0000-0003-2957-4596</orcidid><orcidid>https://orcid.org/0000-0002-3563-8245</orcidid><orcidid>https://orcid.org/0000-0002-7551-4124</orcidid></search><sort><creationdate>201711</creationdate><title>Blind Thrusting, Surface Folding, and the Development of Geological Structure in the Mw 6.3 2015 Pishan (China) Earthquake</title><author>Ainscoe, E. A. ; Elliott, J. R. ; Copley, A. ; Craig, T. J. ; Li, T. ; Parsons, B. E. ; Walker, R. T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1801-d8a8b2bb22b6fdb1016e7eecd41b27d853ce9bdb776ab59347645fda6a817ca13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Banks (topography)</topic><topic>Coefficient of friction</topic><topic>continental rheology</topic><topic>Deformation</topic><topic>Deformation effects</topic><topic>Deformation mechanisms</topic><topic>Dipping</topic><topic>Earthquakes</topic><topic>Fault lines</topic><topic>Faults</topic><topic>Folding</topic><topic>fold‐and‐thrust</topic><topic>Geological data</topic><topic>Geological faults</topic><topic>Geological hazards</topic><topic>Geological structures</topic><topic>Geology</topic><topic>Geophysics</topic><topic>growth of topography</topic><topic>InSAR</topic><topic>Interferometric synthetic aperture radar</topic><topic>Interferometry</topic><topic>Pishan</topic><topic>Plateaus</topic><topic>Quaternary</topic><topic>Radar</topic><topic>Rheological properties</topic><topic>Rheology</topic><topic>SAR (radar)</topic><topic>Sediments</topic><topic>Seismic activity</topic><topic>seismic cycle</topic><topic>Seismic hazard</topic><topic>Seismic surveys</topic><topic>Seismic waves</topic><topic>Slip</topic><topic>Slope</topic><topic>Synthetic aperture radar</topic><topic>Synthetic aperture radar interferometry</topic><topic>Tectonics</topic><topic>Terraces</topic><topic>Topography</topic><topic>Topography (geology)</topic><topic>Uplift</topic><topic>Viscosity</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ainscoe, E. A.</creatorcontrib><creatorcontrib>Elliott, J. R.</creatorcontrib><creatorcontrib>Copley, A.</creatorcontrib><creatorcontrib>Craig, T. J.</creatorcontrib><creatorcontrib>Li, T.</creatorcontrib><creatorcontrib>Parsons, B. E.</creatorcontrib><creatorcontrib>Walker, R. T.</creatorcontrib><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of geophysical research. Solid earth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ainscoe, E. A.</au><au>Elliott, J. R.</au><au>Copley, A.</au><au>Craig, T. J.</au><au>Li, T.</au><au>Parsons, B. E.</au><au>Walker, R. T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Blind Thrusting, Surface Folding, and the Development of Geological Structure in the Mw 6.3 2015 Pishan (China) Earthquake</atitle><jtitle>Journal of geophysical research. Solid earth</jtitle><date>2017-11</date><risdate>2017</risdate><volume>122</volume><issue>11</issue><spage>9359</spage><epage>9382</epage><pages>9359-9382</pages><issn>2169-9313</issn><eissn>2169-9356</eissn><abstract>The relationship between individual earthquakes and the longer‐term growth of topography and of geological structures is not fully understood, but is key to our ability to make use of topographic and geological data sets in the contexts of seismic hazard and wider‐scale tectonics. Here we investigate those relationships at an active fold‐and‐thrust belt in the southwest Tarim Basin, Central Asia. We use seismic waveforms and interferometric synthetic aperture radar (InSAR) to determine the fault parameters and slip distribution of the 2015 Mw6.3 Pishan earthquake—a blind, reverse‐faulting event dipping toward the Tibetan Plateau. Our earthquake mechanism and location correspond closely to a fault mapped independently by seismic reflection, indicating that the earthquake was on a preexisting ramp fault over a depth range of ∼9–13 km. However, the geometry of folding in the overlying fluvial terraces cannot be fully explained by repeated coseismic slip in events such as the 2015 earthquake nor by the early postseismic motion shown in our interferograms; a key role in growth of the topography must be played by other mechanisms. The earthquake occurred at the Tarim‐Tibet boundary, with the unusually low dip of 21°. We use our source models from Pishan and a 2012 event to argue that the Tarim Basin crust deforms only by brittle failure on faults whose effective coefficient of friction is ≤0.05 ± 0.025. In contrast, most of the Tibetan crust undergoes ductile deformation, with a viscosity of order 1020–1022 Pa s. This contrast in rheologies provides an explanation for the low dip of the earthquake fault plane.
Key Points
Coseismic fault geometry and location closely match a preexisting blind fault
Quaternary fold grows by distributed deformation in the overlying sediments and does not align with coseismic or early postseismic uplift
Rheology contrast between the Tarim Basin and Tibet may explain the earthquake's low dip angle</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2017JB014268</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0003-2198-9172</orcidid><orcidid>https://orcid.org/0000-0001-8190-1676</orcidid><orcidid>https://orcid.org/0000-0003-2957-4596</orcidid><orcidid>https://orcid.org/0000-0002-3563-8245</orcidid><orcidid>https://orcid.org/0000-0002-7551-4124</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-9313 |
ispartof | Journal of geophysical research. Solid earth, 2017-11, Vol.122 (11), p.9359-9382 |
issn | 2169-9313 2169-9356 |
language | eng |
recordid | cdi_proquest_journals_1980969645 |
source | Access via Wiley Online Library; Wiley Online Library (Open Access Collection) |
subjects | Banks (topography) Coefficient of friction continental rheology Deformation Deformation effects Deformation mechanisms Dipping Earthquakes Fault lines Faults Folding fold‐and‐thrust Geological data Geological faults Geological hazards Geological structures Geology Geophysics growth of topography InSAR Interferometric synthetic aperture radar Interferometry Pishan Plateaus Quaternary Radar Rheological properties Rheology SAR (radar) Sediments Seismic activity seismic cycle Seismic hazard Seismic surveys Seismic waves Slip Slope Synthetic aperture radar Synthetic aperture radar interferometry Tectonics Terraces Topography Topography (geology) Uplift Viscosity Waveforms |
title | Blind Thrusting, Surface Folding, and the Development of Geological Structure in the Mw 6.3 2015 Pishan (China) Earthquake |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T23%3A38%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Blind%20Thrusting,%20Surface%20Folding,%20and%20the%20Development%20of%20Geological%20Structure%20in%20the%20Mw%206.3%202015%20Pishan%20(China)%20Earthquake&rft.jtitle=Journal%20of%20geophysical%20research.%20Solid%20earth&rft.au=Ainscoe,%20E.%20A.&rft.date=2017-11&rft.volume=122&rft.issue=11&rft.spage=9359&rft.epage=9382&rft.pages=9359-9382&rft.issn=2169-9313&rft.eissn=2169-9356&rft_id=info:doi/10.1002/2017JB014268&rft_dat=%3Cproquest_wiley%3E1980969645%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1980969645&rft_id=info:pmid/&rfr_iscdi=true |