Highly uniform ultrasound-sensitive nanospheres produced by a pH-induced micelle-to-vesicle transition for tumor-targeted drug delivery
Although gas-filled microbubbles with high echogenicity are widely applied inclinical ultrasonography, the micron scale particle size impedes their use in the treatment of solid tumors,which are accessible to objects less than several hundred nanometers. We herein propose an unusual approach involvi...
Gespeichert in:
Veröffentlicht in: | Nano research 2018-07, Vol.11 (7), p.3710-3721 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3721 |
---|---|
container_issue | 7 |
container_start_page | 3710 |
container_title | Nano research |
container_volume | 11 |
creator | Wang, Yiru Yin, Tinghui Su, Zhenwei Qiu, Chen Wang, Yong Zheng, Rongqin Chen, Meiwan Shuai, Xintao |
description | Although gas-filled microbubbles with high echogenicity are widely applied inclinical ultrasonography, the micron scale particle size impedes their use in the treatment of solid tumors,which are accessible to objects less than several hundred nanometers. We herein propose an unusual approach involving apH-induced core–shell micelle-to-vesicle transition to prepare ultrasound-sensitive polymeric nanospheres (polymersomes in structure) possessing multiple features, including nanosize, monodispersity, and incorporation of a phase-transitional imaging agent into the aqueous lumen. These features are not achievable via the conventional double-emulsion method for polymersome preparation. The nanospheres were constructed based on a novel triblock copolymer with dual pH sensitivity. The liquid-to-gas phase transition of the imaging agent induced by external low-frequency ultrasound may destroy the nanospheres for a rapid drug release, with simultaneous tissue-penetrating drug delivery inside a tumor. These effects may provide new opportunities for the development of an effective cancer therapy with few adverse effects. |
doi_str_mv | 10.1007/s12274-017-1939-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1980858167</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1980858167</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-aa56936cb5a9c8243c87a055771437e29e1b3bcba062bd6bb3246dbfc1d2e2f33</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhosouK7-AG8Bz9F89PMoi7qC4EXPIUmn3S5tUpNmob_Av23WKnhxLjMD7_sM8ybJNSW3lJDizlPGihQTWmBa8QrPJ8mKVlWJSazT35my9Dy58H5PSM5oWq6Sz23X7voZBdM11g0o9JOT3gZTYw_Gd1N3AGSksX7cgQOPRmfroKFGakYSjVvcmWUfOg19D3iy-AC-0z2giPpGWIMiHE1hsA5P0rUwRUPtQotq6OMFN18mZ43sPVz99HXy_vjwttnil9en5839C9ac5hOWMssrnmuVyUqXLOW6LCTJsqKgKS-AVUAVV1rJ-J-qc6U4S_NaNZrWDFjD-Tq5Wbjxj48AfhJ7G5yJJwWtSlJmJc2LqKKLSjvrvYNGjK4bpJsFJeKYt1jyFjFvccxbzNHDFo-PWtOC-0P-1_QFgjmHeg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1980858167</pqid></control><display><type>article</type><title>Highly uniform ultrasound-sensitive nanospheres produced by a pH-induced micelle-to-vesicle transition for tumor-targeted drug delivery</title><source>Springer Nature - Complete Springer Journals</source><creator>Wang, Yiru ; Yin, Tinghui ; Su, Zhenwei ; Qiu, Chen ; Wang, Yong ; Zheng, Rongqin ; Chen, Meiwan ; Shuai, Xintao</creator><creatorcontrib>Wang, Yiru ; Yin, Tinghui ; Su, Zhenwei ; Qiu, Chen ; Wang, Yong ; Zheng, Rongqin ; Chen, Meiwan ; Shuai, Xintao</creatorcontrib><description>Although gas-filled microbubbles with high echogenicity are widely applied inclinical ultrasonography, the micron scale particle size impedes their use in the treatment of solid tumors,which are accessible to objects less than several hundred nanometers. We herein propose an unusual approach involving apH-induced core–shell micelle-to-vesicle transition to prepare ultrasound-sensitive polymeric nanospheres (polymersomes in structure) possessing multiple features, including nanosize, monodispersity, and incorporation of a phase-transitional imaging agent into the aqueous lumen. These features are not achievable via the conventional double-emulsion method for polymersome preparation. The nanospheres were constructed based on a novel triblock copolymer with dual pH sensitivity. The liquid-to-gas phase transition of the imaging agent induced by external low-frequency ultrasound may destroy the nanospheres for a rapid drug release, with simultaneous tissue-penetrating drug delivery inside a tumor. These effects may provide new opportunities for the development of an effective cancer therapy with few adverse effects.</description><identifier>ISSN: 1998-0124</identifier><identifier>EISSN: 1998-0000</identifier><identifier>DOI: 10.1007/s12274-017-1939-y</identifier><language>eng</language><publisher>Beijing: Tsinghua University Press</publisher><subject>Atomic/Molecular Structure and Spectra ; Biomedicine ; Biotechnology ; Block copolymers ; Cancer ; Chemistry and Materials Science ; Condensed Matter Physics ; Drug delivery ; Drug delivery systems ; Materials Science ; Micelles ; Nanospheres ; Nanotechnology ; pH effects ; Phase transitions ; Research Article ; Solid tumors ; Ultrasonic imaging ; Ultrasound</subject><ispartof>Nano research, 2018-07, Vol.11 (7), p.3710-3721</ispartof><rights>Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017</rights><rights>Nano Research is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-aa56936cb5a9c8243c87a055771437e29e1b3bcba062bd6bb3246dbfc1d2e2f33</citedby><cites>FETCH-LOGICAL-c316t-aa56936cb5a9c8243c87a055771437e29e1b3bcba062bd6bb3246dbfc1d2e2f33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12274-017-1939-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12274-017-1939-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Wang, Yiru</creatorcontrib><creatorcontrib>Yin, Tinghui</creatorcontrib><creatorcontrib>Su, Zhenwei</creatorcontrib><creatorcontrib>Qiu, Chen</creatorcontrib><creatorcontrib>Wang, Yong</creatorcontrib><creatorcontrib>Zheng, Rongqin</creatorcontrib><creatorcontrib>Chen, Meiwan</creatorcontrib><creatorcontrib>Shuai, Xintao</creatorcontrib><title>Highly uniform ultrasound-sensitive nanospheres produced by a pH-induced micelle-to-vesicle transition for tumor-targeted drug delivery</title><title>Nano research</title><addtitle>Nano Res</addtitle><description>Although gas-filled microbubbles with high echogenicity are widely applied inclinical ultrasonography, the micron scale particle size impedes their use in the treatment of solid tumors,which are accessible to objects less than several hundred nanometers. We herein propose an unusual approach involving apH-induced core–shell micelle-to-vesicle transition to prepare ultrasound-sensitive polymeric nanospheres (polymersomes in structure) possessing multiple features, including nanosize, monodispersity, and incorporation of a phase-transitional imaging agent into the aqueous lumen. These features are not achievable via the conventional double-emulsion method for polymersome preparation. The nanospheres were constructed based on a novel triblock copolymer with dual pH sensitivity. The liquid-to-gas phase transition of the imaging agent induced by external low-frequency ultrasound may destroy the nanospheres for a rapid drug release, with simultaneous tissue-penetrating drug delivery inside a tumor. These effects may provide new opportunities for the development of an effective cancer therapy with few adverse effects.</description><subject>Atomic/Molecular Structure and Spectra</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Block copolymers</subject><subject>Cancer</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Drug delivery</subject><subject>Drug delivery systems</subject><subject>Materials Science</subject><subject>Micelles</subject><subject>Nanospheres</subject><subject>Nanotechnology</subject><subject>pH effects</subject><subject>Phase transitions</subject><subject>Research Article</subject><subject>Solid tumors</subject><subject>Ultrasonic imaging</subject><subject>Ultrasound</subject><issn>1998-0124</issn><issn>1998-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1LxDAQhosouK7-AG8Bz9F89PMoi7qC4EXPIUmn3S5tUpNmob_Av23WKnhxLjMD7_sM8ybJNSW3lJDizlPGihQTWmBa8QrPJ8mKVlWJSazT35my9Dy58H5PSM5oWq6Sz23X7voZBdM11g0o9JOT3gZTYw_Gd1N3AGSksX7cgQOPRmfroKFGakYSjVvcmWUfOg19D3iy-AC-0z2giPpGWIMiHE1hsA5P0rUwRUPtQotq6OMFN18mZ43sPVz99HXy_vjwttnil9en5839C9ac5hOWMssrnmuVyUqXLOW6LCTJsqKgKS-AVUAVV1rJ-J-qc6U4S_NaNZrWDFjD-Tq5Wbjxj48AfhJ7G5yJJwWtSlJmJc2LqKKLSjvrvYNGjK4bpJsFJeKYt1jyFjFvccxbzNHDFo-PWtOC-0P-1_QFgjmHeg</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Wang, Yiru</creator><creator>Yin, Tinghui</creator><creator>Su, Zhenwei</creator><creator>Qiu, Chen</creator><creator>Wang, Yong</creator><creator>Zheng, Rongqin</creator><creator>Chen, Meiwan</creator><creator>Shuai, Xintao</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20180701</creationdate><title>Highly uniform ultrasound-sensitive nanospheres produced by a pH-induced micelle-to-vesicle transition for tumor-targeted drug delivery</title><author>Wang, Yiru ; Yin, Tinghui ; Su, Zhenwei ; Qiu, Chen ; Wang, Yong ; Zheng, Rongqin ; Chen, Meiwan ; Shuai, Xintao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-aa56936cb5a9c8243c87a055771437e29e1b3bcba062bd6bb3246dbfc1d2e2f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Atomic/Molecular Structure and Spectra</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Block copolymers</topic><topic>Cancer</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Drug delivery</topic><topic>Drug delivery systems</topic><topic>Materials Science</topic><topic>Micelles</topic><topic>Nanospheres</topic><topic>Nanotechnology</topic><topic>pH effects</topic><topic>Phase transitions</topic><topic>Research Article</topic><topic>Solid tumors</topic><topic>Ultrasonic imaging</topic><topic>Ultrasound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yiru</creatorcontrib><creatorcontrib>Yin, Tinghui</creatorcontrib><creatorcontrib>Su, Zhenwei</creatorcontrib><creatorcontrib>Qiu, Chen</creatorcontrib><creatorcontrib>Wang, Yong</creatorcontrib><creatorcontrib>Zheng, Rongqin</creatorcontrib><creatorcontrib>Chen, Meiwan</creatorcontrib><creatorcontrib>Shuai, Xintao</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nano research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yiru</au><au>Yin, Tinghui</au><au>Su, Zhenwei</au><au>Qiu, Chen</au><au>Wang, Yong</au><au>Zheng, Rongqin</au><au>Chen, Meiwan</au><au>Shuai, Xintao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly uniform ultrasound-sensitive nanospheres produced by a pH-induced micelle-to-vesicle transition for tumor-targeted drug delivery</atitle><jtitle>Nano research</jtitle><stitle>Nano Res</stitle><date>2018-07-01</date><risdate>2018</risdate><volume>11</volume><issue>7</issue><spage>3710</spage><epage>3721</epage><pages>3710-3721</pages><issn>1998-0124</issn><eissn>1998-0000</eissn><abstract>Although gas-filled microbubbles with high echogenicity are widely applied inclinical ultrasonography, the micron scale particle size impedes their use in the treatment of solid tumors,which are accessible to objects less than several hundred nanometers. We herein propose an unusual approach involving apH-induced core–shell micelle-to-vesicle transition to prepare ultrasound-sensitive polymeric nanospheres (polymersomes in structure) possessing multiple features, including nanosize, monodispersity, and incorporation of a phase-transitional imaging agent into the aqueous lumen. These features are not achievable via the conventional double-emulsion method for polymersome preparation. The nanospheres were constructed based on a novel triblock copolymer with dual pH sensitivity. The liquid-to-gas phase transition of the imaging agent induced by external low-frequency ultrasound may destroy the nanospheres for a rapid drug release, with simultaneous tissue-penetrating drug delivery inside a tumor. These effects may provide new opportunities for the development of an effective cancer therapy with few adverse effects.</abstract><cop>Beijing</cop><pub>Tsinghua University Press</pub><doi>10.1007/s12274-017-1939-y</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1998-0124 |
ispartof | Nano research, 2018-07, Vol.11 (7), p.3710-3721 |
issn | 1998-0124 1998-0000 |
language | eng |
recordid | cdi_proquest_journals_1980858167 |
source | Springer Nature - Complete Springer Journals |
subjects | Atomic/Molecular Structure and Spectra Biomedicine Biotechnology Block copolymers Cancer Chemistry and Materials Science Condensed Matter Physics Drug delivery Drug delivery systems Materials Science Micelles Nanospheres Nanotechnology pH effects Phase transitions Research Article Solid tumors Ultrasonic imaging Ultrasound |
title | Highly uniform ultrasound-sensitive nanospheres produced by a pH-induced micelle-to-vesicle transition for tumor-targeted drug delivery |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T13%3A29%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20uniform%20ultrasound-sensitive%20nanospheres%20produced%20by%20a%20pH-induced%20micelle-to-vesicle%20transition%20for%20tumor-targeted%20drug%20delivery&rft.jtitle=Nano%20research&rft.au=Wang,%20Yiru&rft.date=2018-07-01&rft.volume=11&rft.issue=7&rft.spage=3710&rft.epage=3721&rft.pages=3710-3721&rft.issn=1998-0124&rft.eissn=1998-0000&rft_id=info:doi/10.1007/s12274-017-1939-y&rft_dat=%3Cproquest_cross%3E1980858167%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1980858167&rft_id=info:pmid/&rfr_iscdi=true |