Restaurant Revenue Management at Chevys: Determining the Best Table Mix
ABSTRACT Revenue management has been used in a variety of industries and generally takes the form of managing demand by manipulating length of customer usage and price. Supply mix is rarely considered, although it can have considerable impact on revenue. In this research, we focused on developing an...
Gespeichert in:
Veröffentlicht in: | Decision sciences 2004-08, Vol.35 (3), p.371-392 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 392 |
---|---|
container_issue | 3 |
container_start_page | 371 |
container_title | Decision sciences |
container_volume | 35 |
creator | Kimes, Sheryl E. Thompson, Gary M. |
description | ABSTRACT
Revenue management has been used in a variety of industries and generally takes the form of managing demand by manipulating length of customer usage and price. Supply mix is rarely considered, although it can have considerable impact on revenue. In this research, we focused on developing an optimal supply mix, specifically on determining the supply mix that would maximize revenue. We used data from a Chevys restaurant, part of a large chain of Mexican restaurants, in conjunction with a simulation model to evaluate and enumerate all possible supply (table) mixes. Compared to the restaurant's existing table mix, the optimal mix is capable of handling a 30% increase in customer volume without increasing waiting times beyond their original levels. While our study was in a restaurant context, the results of this research are applicable to other service businesses. |
doi_str_mv | 10.1111/j.0011-7315.2004.02531.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_198081583</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>673151831</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4331-547a7592813a90c78a5d4b096826f38151475097209d019a9573cc27a62aca343</originalsourceid><addsrcrecordid>eNqNkF1PwjAUhhujiYj-h8b7zdN1XVcvTHTiJEFNCH7cNWUU2ISB7Ybj39s5w7W9Oc3J-zxtXoQwAZ-4c1X4AIR4nBLmBwChDwGjxG-OUI-wEDwmCDtGvUPoFJ1ZWwBAxELaQ-lY20rVRpUVHuudLmuNn1SpFnqt3UpVOFnq3d5e43tdabPOy7xc4Gqp8Z0D8URNVw7Im3N0Mlcrqy_-Zh-9PgwmyaM3ekmHye3Iy0JKicdCrjgTQUyoEpDxWLFZOAURxUE0pzFhJOQMBA9AzIAIJRinWRZwFQUqUzSkfXTZebdm81W7L8hiU5vSPSmJiMEZYupCcRfKzMZao-dya_K1MntJQLatyUK2hci2ENm2Jn9bk41Dbzr0O1_p_b85eT9Ihu3VCbxOkNtKNweBMp8y4pQz-f6cyrdRxCBKqfygP4THfvU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>198081583</pqid></control><display><type>article</type><title>Restaurant Revenue Management at Chevys: Determining the Best Table Mix</title><source>Wiley Online Library Journals Frontfile Complete</source><source>EBSCOhost Business Source Complete</source><creator>Kimes, Sheryl E. ; Thompson, Gary M.</creator><creatorcontrib>Kimes, Sheryl E. ; Thompson, Gary M.</creatorcontrib><description>ABSTRACT
Revenue management has been used in a variety of industries and generally takes the form of managing demand by manipulating length of customer usage and price. Supply mix is rarely considered, although it can have considerable impact on revenue. In this research, we focused on developing an optimal supply mix, specifically on determining the supply mix that would maximize revenue. We used data from a Chevys restaurant, part of a large chain of Mexican restaurants, in conjunction with a simulation model to evaluate and enumerate all possible supply (table) mixes. Compared to the restaurant's existing table mix, the optimal mix is capable of handling a 30% increase in customer volume without increasing waiting times beyond their original levels. While our study was in a restaurant context, the results of this research are applicable to other service businesses.</description><identifier>ISSN: 0011-7315</identifier><identifier>EISSN: 1540-5915</identifier><identifier>DOI: 10.1111/j.0011-7315.2004.02531.x</identifier><identifier>CODEN: DESCDQ</identifier><language>eng</language><publisher>J. Mack Robinson College of Business, Georgia State University , Atlanta , GA 30303 , 404-651-4073, fax: 404-651-2804: Decision Sciences</publisher><subject>Aggregate planning ; Air travel ; Airlines ; Capacity Planning ; Case Study ; Customer services ; Integer programming ; Operations research ; Prices ; Restaurants ; Revenue Management ; Service Operations ; Simulation ; Studies</subject><ispartof>Decision sciences, 2004-08, Vol.35 (3), p.371-392</ispartof><rights>Copyright American Institute for Decision Sciences Summer 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4331-547a7592813a90c78a5d4b096826f38151475097209d019a9573cc27a62aca343</citedby><cites>FETCH-LOGICAL-c4331-547a7592813a90c78a5d4b096826f38151475097209d019a9573cc27a62aca343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.0011-7315.2004.02531.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.0011-7315.2004.02531.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Kimes, Sheryl E.</creatorcontrib><creatorcontrib>Thompson, Gary M.</creatorcontrib><title>Restaurant Revenue Management at Chevys: Determining the Best Table Mix</title><title>Decision sciences</title><description>ABSTRACT
Revenue management has been used in a variety of industries and generally takes the form of managing demand by manipulating length of customer usage and price. Supply mix is rarely considered, although it can have considerable impact on revenue. In this research, we focused on developing an optimal supply mix, specifically on determining the supply mix that would maximize revenue. We used data from a Chevys restaurant, part of a large chain of Mexican restaurants, in conjunction with a simulation model to evaluate and enumerate all possible supply (table) mixes. Compared to the restaurant's existing table mix, the optimal mix is capable of handling a 30% increase in customer volume without increasing waiting times beyond their original levels. While our study was in a restaurant context, the results of this research are applicable to other service businesses.</description><subject>Aggregate planning</subject><subject>Air travel</subject><subject>Airlines</subject><subject>Capacity Planning</subject><subject>Case Study</subject><subject>Customer services</subject><subject>Integer programming</subject><subject>Operations research</subject><subject>Prices</subject><subject>Restaurants</subject><subject>Revenue Management</subject><subject>Service Operations</subject><subject>Simulation</subject><subject>Studies</subject><issn>0011-7315</issn><issn>1540-5915</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkF1PwjAUhhujiYj-h8b7zdN1XVcvTHTiJEFNCH7cNWUU2ISB7Ybj39s5w7W9Oc3J-zxtXoQwAZ-4c1X4AIR4nBLmBwChDwGjxG-OUI-wEDwmCDtGvUPoFJ1ZWwBAxELaQ-lY20rVRpUVHuudLmuNn1SpFnqt3UpVOFnq3d5e43tdabPOy7xc4Gqp8Z0D8URNVw7Im3N0Mlcrqy_-Zh-9PgwmyaM3ekmHye3Iy0JKicdCrjgTQUyoEpDxWLFZOAURxUE0pzFhJOQMBA9AzIAIJRinWRZwFQUqUzSkfXTZebdm81W7L8hiU5vSPSmJiMEZYupCcRfKzMZao-dya_K1MntJQLatyUK2hci2ENm2Jn9bk41Dbzr0O1_p_b85eT9Ihu3VCbxOkNtKNweBMp8y4pQz-f6cyrdRxCBKqfygP4THfvU</recordid><startdate>200408</startdate><enddate>200408</enddate><creator>Kimes, Sheryl E.</creator><creator>Thompson, Gary M.</creator><general>Decision Sciences</general><general>American Institute for Decision Sciences</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AF</scope><scope>8BJ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JBE</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M2P</scope><scope>M7S</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>200408</creationdate><title>Restaurant Revenue Management at Chevys: Determining the Best Table Mix</title><author>Kimes, Sheryl E. ; Thompson, Gary M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4331-547a7592813a90c78a5d4b096826f38151475097209d019a9573cc27a62aca343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Aggregate planning</topic><topic>Air travel</topic><topic>Airlines</topic><topic>Capacity Planning</topic><topic>Case Study</topic><topic>Customer services</topic><topic>Integer programming</topic><topic>Operations research</topic><topic>Prices</topic><topic>Restaurants</topic><topic>Revenue Management</topic><topic>Service Operations</topic><topic>Simulation</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kimes, Sheryl E.</creatorcontrib><creatorcontrib>Thompson, Gary M.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Decision sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kimes, Sheryl E.</au><au>Thompson, Gary M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Restaurant Revenue Management at Chevys: Determining the Best Table Mix</atitle><jtitle>Decision sciences</jtitle><date>2004-08</date><risdate>2004</risdate><volume>35</volume><issue>3</issue><spage>371</spage><epage>392</epage><pages>371-392</pages><issn>0011-7315</issn><eissn>1540-5915</eissn><coden>DESCDQ</coden><abstract>ABSTRACT
Revenue management has been used in a variety of industries and generally takes the form of managing demand by manipulating length of customer usage and price. Supply mix is rarely considered, although it can have considerable impact on revenue. In this research, we focused on developing an optimal supply mix, specifically on determining the supply mix that would maximize revenue. We used data from a Chevys restaurant, part of a large chain of Mexican restaurants, in conjunction with a simulation model to evaluate and enumerate all possible supply (table) mixes. Compared to the restaurant's existing table mix, the optimal mix is capable of handling a 30% increase in customer volume without increasing waiting times beyond their original levels. While our study was in a restaurant context, the results of this research are applicable to other service businesses.</abstract><cop>J. Mack Robinson College of Business, Georgia State University , Atlanta , GA 30303 , 404-651-4073, fax: 404-651-2804</cop><pub>Decision Sciences</pub><doi>10.1111/j.0011-7315.2004.02531.x</doi><tpages>22</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0011-7315 |
ispartof | Decision sciences, 2004-08, Vol.35 (3), p.371-392 |
issn | 0011-7315 1540-5915 |
language | eng |
recordid | cdi_proquest_journals_198081583 |
source | Wiley Online Library Journals Frontfile Complete; EBSCOhost Business Source Complete |
subjects | Aggregate planning Air travel Airlines Capacity Planning Case Study Customer services Integer programming Operations research Prices Restaurants Revenue Management Service Operations Simulation Studies |
title | Restaurant Revenue Management at Chevys: Determining the Best Table Mix |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T18%3A15%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Restaurant%20Revenue%20Management%20at%20Chevys:%20Determining%20the%20Best%20Table%20Mix&rft.jtitle=Decision%20sciences&rft.au=Kimes,%20Sheryl%20E.&rft.date=2004-08&rft.volume=35&rft.issue=3&rft.spage=371&rft.epage=392&rft.pages=371-392&rft.issn=0011-7315&rft.eissn=1540-5915&rft.coden=DESCDQ&rft_id=info:doi/10.1111/j.0011-7315.2004.02531.x&rft_dat=%3Cproquest_cross%3E673151831%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=198081583&rft_id=info:pmid/&rfr_iscdi=true |