A new adaptive hybrid controller for vibration control of a vehicle seat suspension featuring MR damper

This paper presents a new hybrid controller which is a combination of three control schemes: fuzzy neural control, PI control and sliding mode control. The interval type 2 fuzzy model featuring updated rules via online is used in this study and in order to support the fuzzy model, a granular cluster...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of vibration and control 2017-12, Vol.23 (20), p.3392-3413
Hauptverfasser: Phu, Do Xuan, Choi, Sang-Min, Choi, Seung-Bok
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3413
container_issue 20
container_start_page 3392
container_title Journal of vibration and control
container_volume 23
creator Phu, Do Xuan
Choi, Sang-Min
Choi, Seung-Bok
description This paper presents a new hybrid controller which is a combination of three control schemes: fuzzy neural control, PI control and sliding mode control. The interval type 2 fuzzy model featuring updated rules via online is used in this study and in order to support the fuzzy model, a granular clustering method is applied to find groups of data related to the initial fuzzy rule. Then the output for fuzzy model is used for the PI-sliding mode controller. The combination of PI and sliding mode controls is carried out by H-infinity technique method which is rely on the modified Riccati-like equation. After developing the mathematical model, the proposed controller is applied to vibration control of a vehicle seat suspension featuring magneto-rheological (MR) damper. In order to demonstrate the effectiveness of the proposed controller, two different excitations of bump and random signals are adopted and corresponding vibration control performances are evaluated. It is demonstrated through both simulation and experiment that the proposed controller can provide much better than vibration control performance compared with the conventional controllers showing more robust stability.
doi_str_mv 10.1177/1077546316629597
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1980710111</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1077546316629597</sage_id><sourcerecordid>1980710111</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-375a9b38b312725afc7f9ec23ecbd6bdc3cc24003a332987fd9158b719ce509b3</originalsourceid><addsrcrecordid>eNp1UM1LwzAUD6LgnN49BjxX85q2aY5jqBMmgui5pOnLltE1NWkn--_NmIIIXt4Hv4_H-xFyDewWQIg7YELkWcGhKFKZS3FCJiAySFJZFqdxjnBywM_JRQgbxliWAZuQ1Yx2-ElVo_rB7pCu97W3DdWuG7xrW_TUOE93tvZqsK77AagzVNEdrq1ukQZUAw1j6LELB5KJ--htt6LPr7RR2x79JTkzqg149d2n5P3h_m2-SJYvj0_z2TLRXORDEouSNS9rDqlIc2W0MBJ1ylHXTVE3mmudZoxxxXn8TJhGQl7WAqTGnEXllNwcfXvvPkYMQ7Vxo-_iyQpkyQQwAIgsdmRp70LwaKre263y-wpYdYiz-htnlCRHSVAr_GX6H_8LE751Yg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1980710111</pqid></control><display><type>article</type><title>A new adaptive hybrid controller for vibration control of a vehicle seat suspension featuring MR damper</title><source>SAGE Complete A-Z List</source><creator>Phu, Do Xuan ; Choi, Sang-Min ; Choi, Seung-Bok</creator><creatorcontrib>Phu, Do Xuan ; Choi, Sang-Min ; Choi, Seung-Bok</creatorcontrib><description>This paper presents a new hybrid controller which is a combination of three control schemes: fuzzy neural control, PI control and sliding mode control. The interval type 2 fuzzy model featuring updated rules via online is used in this study and in order to support the fuzzy model, a granular clustering method is applied to find groups of data related to the initial fuzzy rule. Then the output for fuzzy model is used for the PI-sliding mode controller. The combination of PI and sliding mode controls is carried out by H-infinity technique method which is rely on the modified Riccati-like equation. After developing the mathematical model, the proposed controller is applied to vibration control of a vehicle seat suspension featuring magneto-rheological (MR) damper. In order to demonstrate the effectiveness of the proposed controller, two different excitations of bump and random signals are adopted and corresponding vibration control performances are evaluated. It is demonstrated through both simulation and experiment that the proposed controller can provide much better than vibration control performance compared with the conventional controllers showing more robust stability.</description><identifier>ISSN: 1077-5463</identifier><identifier>EISSN: 1741-2986</identifier><identifier>DOI: 10.1177/1077546316629597</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Adaptive control ; Artificial neural networks ; Clustering ; Computer simulation ; Control stability ; Controllers ; Fuzzy control ; Fuzzy logic ; Neural networks ; Random signals ; Rheological properties ; Robust control ; Robustness (mathematics) ; Sliding mode control ; Vibration ; Vibration control</subject><ispartof>Journal of vibration and control, 2017-12, Vol.23 (20), p.3392-3413</ispartof><rights>The Author(s) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-375a9b38b312725afc7f9ec23ecbd6bdc3cc24003a332987fd9158b719ce509b3</citedby><cites>FETCH-LOGICAL-c375t-375a9b38b312725afc7f9ec23ecbd6bdc3cc24003a332987fd9158b719ce509b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/1077546316629597$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/1077546316629597$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>315,781,785,21824,27929,27930,43626,43627</link.rule.ids></links><search><creatorcontrib>Phu, Do Xuan</creatorcontrib><creatorcontrib>Choi, Sang-Min</creatorcontrib><creatorcontrib>Choi, Seung-Bok</creatorcontrib><title>A new adaptive hybrid controller for vibration control of a vehicle seat suspension featuring MR damper</title><title>Journal of vibration and control</title><description>This paper presents a new hybrid controller which is a combination of three control schemes: fuzzy neural control, PI control and sliding mode control. The interval type 2 fuzzy model featuring updated rules via online is used in this study and in order to support the fuzzy model, a granular clustering method is applied to find groups of data related to the initial fuzzy rule. Then the output for fuzzy model is used for the PI-sliding mode controller. The combination of PI and sliding mode controls is carried out by H-infinity technique method which is rely on the modified Riccati-like equation. After developing the mathematical model, the proposed controller is applied to vibration control of a vehicle seat suspension featuring magneto-rheological (MR) damper. In order to demonstrate the effectiveness of the proposed controller, two different excitations of bump and random signals are adopted and corresponding vibration control performances are evaluated. It is demonstrated through both simulation and experiment that the proposed controller can provide much better than vibration control performance compared with the conventional controllers showing more robust stability.</description><subject>Adaptive control</subject><subject>Artificial neural networks</subject><subject>Clustering</subject><subject>Computer simulation</subject><subject>Control stability</subject><subject>Controllers</subject><subject>Fuzzy control</subject><subject>Fuzzy logic</subject><subject>Neural networks</subject><subject>Random signals</subject><subject>Rheological properties</subject><subject>Robust control</subject><subject>Robustness (mathematics)</subject><subject>Sliding mode control</subject><subject>Vibration</subject><subject>Vibration control</subject><issn>1077-5463</issn><issn>1741-2986</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1UM1LwzAUD6LgnN49BjxX85q2aY5jqBMmgui5pOnLltE1NWkn--_NmIIIXt4Hv4_H-xFyDewWQIg7YELkWcGhKFKZS3FCJiAySFJZFqdxjnBywM_JRQgbxliWAZuQ1Yx2-ElVo_rB7pCu97W3DdWuG7xrW_TUOE93tvZqsK77AagzVNEdrq1ukQZUAw1j6LELB5KJ--htt6LPr7RR2x79JTkzqg149d2n5P3h_m2-SJYvj0_z2TLRXORDEouSNS9rDqlIc2W0MBJ1ylHXTVE3mmudZoxxxXn8TJhGQl7WAqTGnEXllNwcfXvvPkYMQ7Vxo-_iyQpkyQQwAIgsdmRp70LwaKre263y-wpYdYiz-htnlCRHSVAr_GX6H_8LE751Yg</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Phu, Do Xuan</creator><creator>Choi, Sang-Min</creator><creator>Choi, Seung-Bok</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20171201</creationdate><title>A new adaptive hybrid controller for vibration control of a vehicle seat suspension featuring MR damper</title><author>Phu, Do Xuan ; Choi, Sang-Min ; Choi, Seung-Bok</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-375a9b38b312725afc7f9ec23ecbd6bdc3cc24003a332987fd9158b719ce509b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adaptive control</topic><topic>Artificial neural networks</topic><topic>Clustering</topic><topic>Computer simulation</topic><topic>Control stability</topic><topic>Controllers</topic><topic>Fuzzy control</topic><topic>Fuzzy logic</topic><topic>Neural networks</topic><topic>Random signals</topic><topic>Rheological properties</topic><topic>Robust control</topic><topic>Robustness (mathematics)</topic><topic>Sliding mode control</topic><topic>Vibration</topic><topic>Vibration control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Phu, Do Xuan</creatorcontrib><creatorcontrib>Choi, Sang-Min</creatorcontrib><creatorcontrib>Choi, Seung-Bok</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of vibration and control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Phu, Do Xuan</au><au>Choi, Sang-Min</au><au>Choi, Seung-Bok</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new adaptive hybrid controller for vibration control of a vehicle seat suspension featuring MR damper</atitle><jtitle>Journal of vibration and control</jtitle><date>2017-12-01</date><risdate>2017</risdate><volume>23</volume><issue>20</issue><spage>3392</spage><epage>3413</epage><pages>3392-3413</pages><issn>1077-5463</issn><eissn>1741-2986</eissn><abstract>This paper presents a new hybrid controller which is a combination of three control schemes: fuzzy neural control, PI control and sliding mode control. The interval type 2 fuzzy model featuring updated rules via online is used in this study and in order to support the fuzzy model, a granular clustering method is applied to find groups of data related to the initial fuzzy rule. Then the output for fuzzy model is used for the PI-sliding mode controller. The combination of PI and sliding mode controls is carried out by H-infinity technique method which is rely on the modified Riccati-like equation. After developing the mathematical model, the proposed controller is applied to vibration control of a vehicle seat suspension featuring magneto-rheological (MR) damper. In order to demonstrate the effectiveness of the proposed controller, two different excitations of bump and random signals are adopted and corresponding vibration control performances are evaluated. It is demonstrated through both simulation and experiment that the proposed controller can provide much better than vibration control performance compared with the conventional controllers showing more robust stability.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/1077546316629597</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1077-5463
ispartof Journal of vibration and control, 2017-12, Vol.23 (20), p.3392-3413
issn 1077-5463
1741-2986
language eng
recordid cdi_proquest_journals_1980710111
source SAGE Complete A-Z List
subjects Adaptive control
Artificial neural networks
Clustering
Computer simulation
Control stability
Controllers
Fuzzy control
Fuzzy logic
Neural networks
Random signals
Rheological properties
Robust control
Robustness (mathematics)
Sliding mode control
Vibration
Vibration control
title A new adaptive hybrid controller for vibration control of a vehicle seat suspension featuring MR damper
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T09%3A34%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20adaptive%20hybrid%20controller%20for%20vibration%20control%20of%20a%20vehicle%20seat%20suspension%20featuring%20MR%20damper&rft.jtitle=Journal%20of%20vibration%20and%20control&rft.au=Phu,%20Do%20Xuan&rft.date=2017-12-01&rft.volume=23&rft.issue=20&rft.spage=3392&rft.epage=3413&rft.pages=3392-3413&rft.issn=1077-5463&rft.eissn=1741-2986&rft_id=info:doi/10.1177/1077546316629597&rft_dat=%3Cproquest_cross%3E1980710111%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1980710111&rft_id=info:pmid/&rft_sage_id=10.1177_1077546316629597&rfr_iscdi=true