Empirical characterization of modular variable stiffness inflatable structures for supernumerary grasp-assist devices

This paper presents the design, fabrication, and experimental characterization of modular, variable stiffness inflatable components for pneumatically actuated supernumerary robotic (SR) grasp-assist devices. The proposed SR grasp-assist devices are comprised of soft rigidizable finger phalanges and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The International journal of robotics research 2017-12, Vol.36 (13-14), p.1391-1413
Hauptverfasser: Tiziani, Lucas, Hart, Alexander, Cahoon, Thomas, Wu, Faye, Asada, H. Harry, Hammond, Frank L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1413
container_issue 13-14
container_start_page 1391
container_title The International journal of robotics research
container_volume 36
creator Tiziani, Lucas
Hart, Alexander
Cahoon, Thomas
Wu, Faye
Asada, H. Harry
Hammond, Frank L
description This paper presents the design, fabrication, and experimental characterization of modular, variable stiffness inflatable components for pneumatically actuated supernumerary robotic (SR) grasp-assist devices. The proposed SR grasp-assist devices are comprised of soft rigidizable finger phalanges and variable stiffness pneumatic bending actuators that are manufactured using soft lithography fabrication methods. The mechanical and kinematic properties of these modular, inflatable components are characterized experimentally under various loading conditions and over a range of geometric design parameters. The resulting data-driven properties are then used to predict the grasp strengths and motion patterns of SR grasp-assist device configurations designed to accommodate the manipulation of daily living objects. Experimental results demonstrate the ability to program grasp synergies into SR fingers by strategic inflation of the bending actuator antagonist chambers (varying mechanical stiffness), without the need for complicated, high-power mechanisms or precise, low-level motion control. The results also demonstrate the underactuated grasp adaptations enabled by modular inflatable components and the ability to predict mechanical grasping capabilities of wearable pneumatic SR grasp-assist devices using insights from empirical data.
doi_str_mv 10.1177/0278364917714062
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1979964268</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0278364917714062</sage_id><sourcerecordid>1979964268</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-5f9ea95e25b142a48f276b8cbcb7566c0eb03b88487ac8d9be748c47d5558ffc3</originalsourceid><addsrcrecordid>eNp1UEtLxDAQDqLgunr3GPBcTdo0j6Ms6wMWvOi5JGmyZunLmXZBf71d1oMInmaY7zV8hFxzdsu5UncsV7qQwsw7F0zmJ2TBleBZwZU8JYsDnB3wc3KBuGOMFZKZBZnW7ZAgedtQ_27B-jFA-rJj6jvaR9r29dRYoHsLybomUBxTjF1ApKmLjR1_jjD5cYKANPZAcRoCdFMbwMIn3YLFIbOICUdah33yAS_JWbQNhqufuSRvD-vX1VO2eXl8Xt1vMi9yPWZlNMGaMuSl4yK3QsdcSae9806VUnoWHCuc1kIr63VtXFBCe6Hqsix1jL5Ykpuj7wD9xxRwrHb9BN0cWXGjjJEil3pmsSPLQ48IIVYDpHb-veKsOpRb_S13lmRHCdpt-GX6H_8bW9l85A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1979964268</pqid></control><display><type>article</type><title>Empirical characterization of modular variable stiffness inflatable structures for supernumerary grasp-assist devices</title><source>SAGE Complete A-Z List</source><creator>Tiziani, Lucas ; Hart, Alexander ; Cahoon, Thomas ; Wu, Faye ; Asada, H. Harry ; Hammond, Frank L</creator><creatorcontrib>Tiziani, Lucas ; Hart, Alexander ; Cahoon, Thomas ; Wu, Faye ; Asada, H. Harry ; Hammond, Frank L</creatorcontrib><description>This paper presents the design, fabrication, and experimental characterization of modular, variable stiffness inflatable components for pneumatically actuated supernumerary robotic (SR) grasp-assist devices. The proposed SR grasp-assist devices are comprised of soft rigidizable finger phalanges and variable stiffness pneumatic bending actuators that are manufactured using soft lithography fabrication methods. The mechanical and kinematic properties of these modular, inflatable components are characterized experimentally under various loading conditions and over a range of geometric design parameters. The resulting data-driven properties are then used to predict the grasp strengths and motion patterns of SR grasp-assist device configurations designed to accommodate the manipulation of daily living objects. Experimental results demonstrate the ability to program grasp synergies into SR fingers by strategic inflation of the bending actuator antagonist chambers (varying mechanical stiffness), without the need for complicated, high-power mechanisms or precise, low-level motion control. The results also demonstrate the underactuated grasp adaptations enabled by modular inflatable components and the ability to predict mechanical grasping capabilities of wearable pneumatic SR grasp-assist devices using insights from empirical data.</description><identifier>ISSN: 0278-3649</identifier><identifier>EISSN: 1741-3176</identifier><identifier>DOI: 10.1177/0278364917714062</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Design parameters ; Devices ; Fingers ; Grasping (robotics) ; Inflatable structures ; Modular equipment ; Modular structures ; Motion control ; Robotics ; Stiffness ; Wearable technology</subject><ispartof>The International journal of robotics research, 2017-12, Vol.36 (13-14), p.1391-1413</ispartof><rights>The Author(s) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-5f9ea95e25b142a48f276b8cbcb7566c0eb03b88487ac8d9be748c47d5558ffc3</citedby><cites>FETCH-LOGICAL-c428t-5f9ea95e25b142a48f276b8cbcb7566c0eb03b88487ac8d9be748c47d5558ffc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0278364917714062$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0278364917714062$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21818,27923,27924,43620,43621</link.rule.ids></links><search><creatorcontrib>Tiziani, Lucas</creatorcontrib><creatorcontrib>Hart, Alexander</creatorcontrib><creatorcontrib>Cahoon, Thomas</creatorcontrib><creatorcontrib>Wu, Faye</creatorcontrib><creatorcontrib>Asada, H. Harry</creatorcontrib><creatorcontrib>Hammond, Frank L</creatorcontrib><title>Empirical characterization of modular variable stiffness inflatable structures for supernumerary grasp-assist devices</title><title>The International journal of robotics research</title><description>This paper presents the design, fabrication, and experimental characterization of modular, variable stiffness inflatable components for pneumatically actuated supernumerary robotic (SR) grasp-assist devices. The proposed SR grasp-assist devices are comprised of soft rigidizable finger phalanges and variable stiffness pneumatic bending actuators that are manufactured using soft lithography fabrication methods. The mechanical and kinematic properties of these modular, inflatable components are characterized experimentally under various loading conditions and over a range of geometric design parameters. The resulting data-driven properties are then used to predict the grasp strengths and motion patterns of SR grasp-assist device configurations designed to accommodate the manipulation of daily living objects. Experimental results demonstrate the ability to program grasp synergies into SR fingers by strategic inflation of the bending actuator antagonist chambers (varying mechanical stiffness), without the need for complicated, high-power mechanisms or precise, low-level motion control. The results also demonstrate the underactuated grasp adaptations enabled by modular inflatable components and the ability to predict mechanical grasping capabilities of wearable pneumatic SR grasp-assist devices using insights from empirical data.</description><subject>Design parameters</subject><subject>Devices</subject><subject>Fingers</subject><subject>Grasping (robotics)</subject><subject>Inflatable structures</subject><subject>Modular equipment</subject><subject>Modular structures</subject><subject>Motion control</subject><subject>Robotics</subject><subject>Stiffness</subject><subject>Wearable technology</subject><issn>0278-3649</issn><issn>1741-3176</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1UEtLxDAQDqLgunr3GPBcTdo0j6Ms6wMWvOi5JGmyZunLmXZBf71d1oMInmaY7zV8hFxzdsu5UncsV7qQwsw7F0zmJ2TBleBZwZU8JYsDnB3wc3KBuGOMFZKZBZnW7ZAgedtQ_27B-jFA-rJj6jvaR9r29dRYoHsLybomUBxTjF1ApKmLjR1_jjD5cYKANPZAcRoCdFMbwMIn3YLFIbOICUdah33yAS_JWbQNhqufuSRvD-vX1VO2eXl8Xt1vMi9yPWZlNMGaMuSl4yK3QsdcSae9806VUnoWHCuc1kIr63VtXFBCe6Hqsix1jL5Ykpuj7wD9xxRwrHb9BN0cWXGjjJEil3pmsSPLQ48IIVYDpHb-veKsOpRb_S13lmRHCdpt-GX6H_8bW9l85A</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Tiziani, Lucas</creator><creator>Hart, Alexander</creator><creator>Cahoon, Thomas</creator><creator>Wu, Faye</creator><creator>Asada, H. Harry</creator><creator>Hammond, Frank L</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20171201</creationdate><title>Empirical characterization of modular variable stiffness inflatable structures for supernumerary grasp-assist devices</title><author>Tiziani, Lucas ; Hart, Alexander ; Cahoon, Thomas ; Wu, Faye ; Asada, H. Harry ; Hammond, Frank L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-5f9ea95e25b142a48f276b8cbcb7566c0eb03b88487ac8d9be748c47d5558ffc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Design parameters</topic><topic>Devices</topic><topic>Fingers</topic><topic>Grasping (robotics)</topic><topic>Inflatable structures</topic><topic>Modular equipment</topic><topic>Modular structures</topic><topic>Motion control</topic><topic>Robotics</topic><topic>Stiffness</topic><topic>Wearable technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tiziani, Lucas</creatorcontrib><creatorcontrib>Hart, Alexander</creatorcontrib><creatorcontrib>Cahoon, Thomas</creatorcontrib><creatorcontrib>Wu, Faye</creatorcontrib><creatorcontrib>Asada, H. Harry</creatorcontrib><creatorcontrib>Hammond, Frank L</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>The International journal of robotics research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tiziani, Lucas</au><au>Hart, Alexander</au><au>Cahoon, Thomas</au><au>Wu, Faye</au><au>Asada, H. Harry</au><au>Hammond, Frank L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Empirical characterization of modular variable stiffness inflatable structures for supernumerary grasp-assist devices</atitle><jtitle>The International journal of robotics research</jtitle><date>2017-12-01</date><risdate>2017</risdate><volume>36</volume><issue>13-14</issue><spage>1391</spage><epage>1413</epage><pages>1391-1413</pages><issn>0278-3649</issn><eissn>1741-3176</eissn><abstract>This paper presents the design, fabrication, and experimental characterization of modular, variable stiffness inflatable components for pneumatically actuated supernumerary robotic (SR) grasp-assist devices. The proposed SR grasp-assist devices are comprised of soft rigidizable finger phalanges and variable stiffness pneumatic bending actuators that are manufactured using soft lithography fabrication methods. The mechanical and kinematic properties of these modular, inflatable components are characterized experimentally under various loading conditions and over a range of geometric design parameters. The resulting data-driven properties are then used to predict the grasp strengths and motion patterns of SR grasp-assist device configurations designed to accommodate the manipulation of daily living objects. Experimental results demonstrate the ability to program grasp synergies into SR fingers by strategic inflation of the bending actuator antagonist chambers (varying mechanical stiffness), without the need for complicated, high-power mechanisms or precise, low-level motion control. The results also demonstrate the underactuated grasp adaptations enabled by modular inflatable components and the ability to predict mechanical grasping capabilities of wearable pneumatic SR grasp-assist devices using insights from empirical data.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/0278364917714062</doi><tpages>23</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0278-3649
ispartof The International journal of robotics research, 2017-12, Vol.36 (13-14), p.1391-1413
issn 0278-3649
1741-3176
language eng
recordid cdi_proquest_journals_1979964268
source SAGE Complete A-Z List
subjects Design parameters
Devices
Fingers
Grasping (robotics)
Inflatable structures
Modular equipment
Modular structures
Motion control
Robotics
Stiffness
Wearable technology
title Empirical characterization of modular variable stiffness inflatable structures for supernumerary grasp-assist devices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A52%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Empirical%20characterization%20of%20modular%20variable%20stiffness%20inflatable%20structures%20for%20supernumerary%20grasp-assist%20devices&rft.jtitle=The%20International%20journal%20of%20robotics%20research&rft.au=Tiziani,%20Lucas&rft.date=2017-12-01&rft.volume=36&rft.issue=13-14&rft.spage=1391&rft.epage=1413&rft.pages=1391-1413&rft.issn=0278-3649&rft.eissn=1741-3176&rft_id=info:doi/10.1177/0278364917714062&rft_dat=%3Cproquest_cross%3E1979964268%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1979964268&rft_id=info:pmid/&rft_sage_id=10.1177_0278364917714062&rfr_iscdi=true