Empirical characterization of modular variable stiffness inflatable structures for supernumerary grasp-assist devices
This paper presents the design, fabrication, and experimental characterization of modular, variable stiffness inflatable components for pneumatically actuated supernumerary robotic (SR) grasp-assist devices. The proposed SR grasp-assist devices are comprised of soft rigidizable finger phalanges and...
Gespeichert in:
Veröffentlicht in: | The International journal of robotics research 2017-12, Vol.36 (13-14), p.1391-1413 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1413 |
---|---|
container_issue | 13-14 |
container_start_page | 1391 |
container_title | The International journal of robotics research |
container_volume | 36 |
creator | Tiziani, Lucas Hart, Alexander Cahoon, Thomas Wu, Faye Asada, H. Harry Hammond, Frank L |
description | This paper presents the design, fabrication, and experimental characterization of modular, variable stiffness inflatable components for pneumatically actuated supernumerary robotic (SR) grasp-assist devices. The proposed SR grasp-assist devices are comprised of soft rigidizable finger phalanges and variable stiffness pneumatic bending actuators that are manufactured using soft lithography fabrication methods. The mechanical and kinematic properties of these modular, inflatable components are characterized experimentally under various loading conditions and over a range of geometric design parameters. The resulting data-driven properties are then used to predict the grasp strengths and motion patterns of SR grasp-assist device configurations designed to accommodate the manipulation of daily living objects. Experimental results demonstrate the ability to program grasp synergies into SR fingers by strategic inflation of the bending actuator antagonist chambers (varying mechanical stiffness), without the need for complicated, high-power mechanisms or precise, low-level motion control. The results also demonstrate the underactuated grasp adaptations enabled by modular inflatable components and the ability to predict mechanical grasping capabilities of wearable pneumatic SR grasp-assist devices using insights from empirical data. |
doi_str_mv | 10.1177/0278364917714062 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1979964268</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0278364917714062</sage_id><sourcerecordid>1979964268</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-5f9ea95e25b142a48f276b8cbcb7566c0eb03b88487ac8d9be748c47d5558ffc3</originalsourceid><addsrcrecordid>eNp1UEtLxDAQDqLgunr3GPBcTdo0j6Ms6wMWvOi5JGmyZunLmXZBf71d1oMInmaY7zV8hFxzdsu5UncsV7qQwsw7F0zmJ2TBleBZwZU8JYsDnB3wc3KBuGOMFZKZBZnW7ZAgedtQ_27B-jFA-rJj6jvaR9r29dRYoHsLybomUBxTjF1ApKmLjR1_jjD5cYKANPZAcRoCdFMbwMIn3YLFIbOICUdah33yAS_JWbQNhqufuSRvD-vX1VO2eXl8Xt1vMi9yPWZlNMGaMuSl4yK3QsdcSae9806VUnoWHCuc1kIr63VtXFBCe6Hqsix1jL5Ykpuj7wD9xxRwrHb9BN0cWXGjjJEil3pmsSPLQ48IIVYDpHb-veKsOpRb_S13lmRHCdpt-GX6H_8bW9l85A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1979964268</pqid></control><display><type>article</type><title>Empirical characterization of modular variable stiffness inflatable structures for supernumerary grasp-assist devices</title><source>SAGE Complete A-Z List</source><creator>Tiziani, Lucas ; Hart, Alexander ; Cahoon, Thomas ; Wu, Faye ; Asada, H. Harry ; Hammond, Frank L</creator><creatorcontrib>Tiziani, Lucas ; Hart, Alexander ; Cahoon, Thomas ; Wu, Faye ; Asada, H. Harry ; Hammond, Frank L</creatorcontrib><description>This paper presents the design, fabrication, and experimental characterization of modular, variable stiffness inflatable components for pneumatically actuated supernumerary robotic (SR) grasp-assist devices. The proposed SR grasp-assist devices are comprised of soft rigidizable finger phalanges and variable stiffness pneumatic bending actuators that are manufactured using soft lithography fabrication methods. The mechanical and kinematic properties of these modular, inflatable components are characterized experimentally under various loading conditions and over a range of geometric design parameters. The resulting data-driven properties are then used to predict the grasp strengths and motion patterns of SR grasp-assist device configurations designed to accommodate the manipulation of daily living objects. Experimental results demonstrate the ability to program grasp synergies into SR fingers by strategic inflation of the bending actuator antagonist chambers (varying mechanical stiffness), without the need for complicated, high-power mechanisms or precise, low-level motion control. The results also demonstrate the underactuated grasp adaptations enabled by modular inflatable components and the ability to predict mechanical grasping capabilities of wearable pneumatic SR grasp-assist devices using insights from empirical data.</description><identifier>ISSN: 0278-3649</identifier><identifier>EISSN: 1741-3176</identifier><identifier>DOI: 10.1177/0278364917714062</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Design parameters ; Devices ; Fingers ; Grasping (robotics) ; Inflatable structures ; Modular equipment ; Modular structures ; Motion control ; Robotics ; Stiffness ; Wearable technology</subject><ispartof>The International journal of robotics research, 2017-12, Vol.36 (13-14), p.1391-1413</ispartof><rights>The Author(s) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-5f9ea95e25b142a48f276b8cbcb7566c0eb03b88487ac8d9be748c47d5558ffc3</citedby><cites>FETCH-LOGICAL-c428t-5f9ea95e25b142a48f276b8cbcb7566c0eb03b88487ac8d9be748c47d5558ffc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0278364917714062$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0278364917714062$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21818,27923,27924,43620,43621</link.rule.ids></links><search><creatorcontrib>Tiziani, Lucas</creatorcontrib><creatorcontrib>Hart, Alexander</creatorcontrib><creatorcontrib>Cahoon, Thomas</creatorcontrib><creatorcontrib>Wu, Faye</creatorcontrib><creatorcontrib>Asada, H. Harry</creatorcontrib><creatorcontrib>Hammond, Frank L</creatorcontrib><title>Empirical characterization of modular variable stiffness inflatable structures for supernumerary grasp-assist devices</title><title>The International journal of robotics research</title><description>This paper presents the design, fabrication, and experimental characterization of modular, variable stiffness inflatable components for pneumatically actuated supernumerary robotic (SR) grasp-assist devices. The proposed SR grasp-assist devices are comprised of soft rigidizable finger phalanges and variable stiffness pneumatic bending actuators that are manufactured using soft lithography fabrication methods. The mechanical and kinematic properties of these modular, inflatable components are characterized experimentally under various loading conditions and over a range of geometric design parameters. The resulting data-driven properties are then used to predict the grasp strengths and motion patterns of SR grasp-assist device configurations designed to accommodate the manipulation of daily living objects. Experimental results demonstrate the ability to program grasp synergies into SR fingers by strategic inflation of the bending actuator antagonist chambers (varying mechanical stiffness), without the need for complicated, high-power mechanisms or precise, low-level motion control. The results also demonstrate the underactuated grasp adaptations enabled by modular inflatable components and the ability to predict mechanical grasping capabilities of wearable pneumatic SR grasp-assist devices using insights from empirical data.</description><subject>Design parameters</subject><subject>Devices</subject><subject>Fingers</subject><subject>Grasping (robotics)</subject><subject>Inflatable structures</subject><subject>Modular equipment</subject><subject>Modular structures</subject><subject>Motion control</subject><subject>Robotics</subject><subject>Stiffness</subject><subject>Wearable technology</subject><issn>0278-3649</issn><issn>1741-3176</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1UEtLxDAQDqLgunr3GPBcTdo0j6Ms6wMWvOi5JGmyZunLmXZBf71d1oMInmaY7zV8hFxzdsu5UncsV7qQwsw7F0zmJ2TBleBZwZU8JYsDnB3wc3KBuGOMFZKZBZnW7ZAgedtQ_27B-jFA-rJj6jvaR9r29dRYoHsLybomUBxTjF1ApKmLjR1_jjD5cYKANPZAcRoCdFMbwMIn3YLFIbOICUdah33yAS_JWbQNhqufuSRvD-vX1VO2eXl8Xt1vMi9yPWZlNMGaMuSl4yK3QsdcSae9806VUnoWHCuc1kIr63VtXFBCe6Hqsix1jL5Ykpuj7wD9xxRwrHb9BN0cWXGjjJEil3pmsSPLQ48IIVYDpHb-veKsOpRb_S13lmRHCdpt-GX6H_8bW9l85A</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Tiziani, Lucas</creator><creator>Hart, Alexander</creator><creator>Cahoon, Thomas</creator><creator>Wu, Faye</creator><creator>Asada, H. Harry</creator><creator>Hammond, Frank L</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20171201</creationdate><title>Empirical characterization of modular variable stiffness inflatable structures for supernumerary grasp-assist devices</title><author>Tiziani, Lucas ; Hart, Alexander ; Cahoon, Thomas ; Wu, Faye ; Asada, H. Harry ; Hammond, Frank L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-5f9ea95e25b142a48f276b8cbcb7566c0eb03b88487ac8d9be748c47d5558ffc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Design parameters</topic><topic>Devices</topic><topic>Fingers</topic><topic>Grasping (robotics)</topic><topic>Inflatable structures</topic><topic>Modular equipment</topic><topic>Modular structures</topic><topic>Motion control</topic><topic>Robotics</topic><topic>Stiffness</topic><topic>Wearable technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tiziani, Lucas</creatorcontrib><creatorcontrib>Hart, Alexander</creatorcontrib><creatorcontrib>Cahoon, Thomas</creatorcontrib><creatorcontrib>Wu, Faye</creatorcontrib><creatorcontrib>Asada, H. Harry</creatorcontrib><creatorcontrib>Hammond, Frank L</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>The International journal of robotics research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tiziani, Lucas</au><au>Hart, Alexander</au><au>Cahoon, Thomas</au><au>Wu, Faye</au><au>Asada, H. Harry</au><au>Hammond, Frank L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Empirical characterization of modular variable stiffness inflatable structures for supernumerary grasp-assist devices</atitle><jtitle>The International journal of robotics research</jtitle><date>2017-12-01</date><risdate>2017</risdate><volume>36</volume><issue>13-14</issue><spage>1391</spage><epage>1413</epage><pages>1391-1413</pages><issn>0278-3649</issn><eissn>1741-3176</eissn><abstract>This paper presents the design, fabrication, and experimental characterization of modular, variable stiffness inflatable components for pneumatically actuated supernumerary robotic (SR) grasp-assist devices. The proposed SR grasp-assist devices are comprised of soft rigidizable finger phalanges and variable stiffness pneumatic bending actuators that are manufactured using soft lithography fabrication methods. The mechanical and kinematic properties of these modular, inflatable components are characterized experimentally under various loading conditions and over a range of geometric design parameters. The resulting data-driven properties are then used to predict the grasp strengths and motion patterns of SR grasp-assist device configurations designed to accommodate the manipulation of daily living objects. Experimental results demonstrate the ability to program grasp synergies into SR fingers by strategic inflation of the bending actuator antagonist chambers (varying mechanical stiffness), without the need for complicated, high-power mechanisms or precise, low-level motion control. The results also demonstrate the underactuated grasp adaptations enabled by modular inflatable components and the ability to predict mechanical grasping capabilities of wearable pneumatic SR grasp-assist devices using insights from empirical data.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/0278364917714062</doi><tpages>23</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0278-3649 |
ispartof | The International journal of robotics research, 2017-12, Vol.36 (13-14), p.1391-1413 |
issn | 0278-3649 1741-3176 |
language | eng |
recordid | cdi_proquest_journals_1979964268 |
source | SAGE Complete A-Z List |
subjects | Design parameters Devices Fingers Grasping (robotics) Inflatable structures Modular equipment Modular structures Motion control Robotics Stiffness Wearable technology |
title | Empirical characterization of modular variable stiffness inflatable structures for supernumerary grasp-assist devices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A52%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Empirical%20characterization%20of%20modular%20variable%20stiffness%20inflatable%20structures%20for%20supernumerary%20grasp-assist%20devices&rft.jtitle=The%20International%20journal%20of%20robotics%20research&rft.au=Tiziani,%20Lucas&rft.date=2017-12-01&rft.volume=36&rft.issue=13-14&rft.spage=1391&rft.epage=1413&rft.pages=1391-1413&rft.issn=0278-3649&rft.eissn=1741-3176&rft_id=info:doi/10.1177/0278364917714062&rft_dat=%3Cproquest_cross%3E1979964268%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1979964268&rft_id=info:pmid/&rft_sage_id=10.1177_0278364917714062&rfr_iscdi=true |