Room-temperature ultrafast nonlinear spectroscopy of a single molecule

Single-molecule spectroscopy aims to unveil often hidden but potentially very important contributions of single entities to a system’s ensemble response. Albeit contributing tremendously to our ever growing understanding of molecular processes, the fundamental question of temporal evolution, or chan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature photonics 2018-01, Vol.12 (1), p.45-49
Hauptverfasser: Liebel, Matz, Toninelli, Costanza, van Hulst, Niek F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 49
container_issue 1
container_start_page 45
container_title Nature photonics
container_volume 12
creator Liebel, Matz
Toninelli, Costanza
van Hulst, Niek F.
description Single-molecule spectroscopy aims to unveil often hidden but potentially very important contributions of single entities to a system’s ensemble response. Albeit contributing tremendously to our ever growing understanding of molecular processes, the fundamental question of temporal evolution, or change, has thus far been inaccessible, thus painting a static picture of a dynamic world. Here, we finally resolve this dilemma by performing ultrafast time-resolved transient spectroscopy on a single molecule. By tracing the femtosecond evolution of excited electronic state spectra of single molecules over hundreds of nanometres of bandwidth at room temperature, we reveal their nonlinear ultrafast response in an effective three-pulse scheme with fluorescence detection. A first excitation pulse is followed by a phase-locked de-excitation pulse pair, providing spectral encoding with 25 fs temporal resolution. This experimental realization of true single-molecule transient spectroscopy demonstrates that two-dimensional electronic spectroscopy of single molecules is experimentally within reach. Frequency-resolved transient excited-state absorption of a single molecule is measured at room temperature. The dynamic Stokes shift and vibrational cooling are directly measured with 25 fs temporal resolution and a spectral detection bandwidth of hundreds of meV.
doi_str_mv 10.1038/s41566-017-0056-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1979785647</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1979785647</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-3a7e77fcf3be042a44642f494a14de6617dc9a26f4adc6fbb487ac72c2ab87133</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wNuC52i-NtkcpVgVCoLoOWTTSWnZ3axJ9tB_b8qKePE0c3jed4YHoVtK7inhzUMStJYSE6owIbXE9RlaUCU0Fo3m5797U1-iq5QOheGasQVav4fQ4wz9CNHmKUI1dTlab1OuhjB0-wFsrNIILseQXBiPVfCVrdJ-2HVQ9aEDN3VwjS687RLc_Mwl-lw_faxe8Obt-XX1uMGOU5kxtwqU8s7zFohgVggpmBdaWCq2ICVVW6ctk17YrZO-bUWjrFPMMds2inK-RHdz7xjD1wQpm0OY4lBOGqqVVk0thSoUnSlXfk4RvBnjvrfxaCgxJ11m1mWKLnPSZeqSYXMmFXbYQfzT_G_oG1nVbk4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1979785647</pqid></control><display><type>article</type><title>Room-temperature ultrafast nonlinear spectroscopy of a single molecule</title><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Liebel, Matz ; Toninelli, Costanza ; van Hulst, Niek F.</creator><creatorcontrib>Liebel, Matz ; Toninelli, Costanza ; van Hulst, Niek F.</creatorcontrib><description>Single-molecule spectroscopy aims to unveil often hidden but potentially very important contributions of single entities to a system’s ensemble response. Albeit contributing tremendously to our ever growing understanding of molecular processes, the fundamental question of temporal evolution, or change, has thus far been inaccessible, thus painting a static picture of a dynamic world. Here, we finally resolve this dilemma by performing ultrafast time-resolved transient spectroscopy on a single molecule. By tracing the femtosecond evolution of excited electronic state spectra of single molecules over hundreds of nanometres of bandwidth at room temperature, we reveal their nonlinear ultrafast response in an effective three-pulse scheme with fluorescence detection. A first excitation pulse is followed by a phase-locked de-excitation pulse pair, providing spectral encoding with 25 fs temporal resolution. This experimental realization of true single-molecule transient spectroscopy demonstrates that two-dimensional electronic spectroscopy of single molecules is experimentally within reach. Frequency-resolved transient excited-state absorption of a single molecule is measured at room temperature. The dynamic Stokes shift and vibrational cooling are directly measured with 25 fs temporal resolution and a spectral detection bandwidth of hundreds of meV.</description><identifier>ISSN: 1749-4885</identifier><identifier>EISSN: 1749-4893</identifier><identifier>DOI: 10.1038/s41566-017-0056-5</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624 ; 639/638/439/945 ; 639/638/440/527 ; 639/925/927/1021 ; 639/925/930/527 ; Applied and Technical Physics ; Electron states ; Electronic spectroscopy ; Evolution ; Excitation spectra ; Fluorescence ; Nonlinear response ; Physics ; Physics and Astronomy ; Quantum Physics ; Room temperature ; Spectroscopy ; Spectrum analysis ; Temporal resolution</subject><ispartof>Nature photonics, 2018-01, Vol.12 (1), p.45-49</ispartof><rights>The Author(s) 2017</rights><rights>Copyright Nature Publishing Group Jan 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-3a7e77fcf3be042a44642f494a14de6617dc9a26f4adc6fbb487ac72c2ab87133</citedby><cites>FETCH-LOGICAL-c316t-3a7e77fcf3be042a44642f494a14de6617dc9a26f4adc6fbb487ac72c2ab87133</cites><orcidid>0000-0001-6220-3143 ; 0000-0002-6843-058X ; 0000-0003-4630-1776</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41566-017-0056-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41566-017-0056-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Liebel, Matz</creatorcontrib><creatorcontrib>Toninelli, Costanza</creatorcontrib><creatorcontrib>van Hulst, Niek F.</creatorcontrib><title>Room-temperature ultrafast nonlinear spectroscopy of a single molecule</title><title>Nature photonics</title><addtitle>Nature Photon</addtitle><description>Single-molecule spectroscopy aims to unveil often hidden but potentially very important contributions of single entities to a system’s ensemble response. Albeit contributing tremendously to our ever growing understanding of molecular processes, the fundamental question of temporal evolution, or change, has thus far been inaccessible, thus painting a static picture of a dynamic world. Here, we finally resolve this dilemma by performing ultrafast time-resolved transient spectroscopy on a single molecule. By tracing the femtosecond evolution of excited electronic state spectra of single molecules over hundreds of nanometres of bandwidth at room temperature, we reveal their nonlinear ultrafast response in an effective three-pulse scheme with fluorescence detection. A first excitation pulse is followed by a phase-locked de-excitation pulse pair, providing spectral encoding with 25 fs temporal resolution. This experimental realization of true single-molecule transient spectroscopy demonstrates that two-dimensional electronic spectroscopy of single molecules is experimentally within reach. Frequency-resolved transient excited-state absorption of a single molecule is measured at room temperature. The dynamic Stokes shift and vibrational cooling are directly measured with 25 fs temporal resolution and a spectral detection bandwidth of hundreds of meV.</description><subject>639/624</subject><subject>639/638/439/945</subject><subject>639/638/440/527</subject><subject>639/925/927/1021</subject><subject>639/925/930/527</subject><subject>Applied and Technical Physics</subject><subject>Electron states</subject><subject>Electronic spectroscopy</subject><subject>Evolution</subject><subject>Excitation spectra</subject><subject>Fluorescence</subject><subject>Nonlinear response</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Room temperature</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Temporal resolution</subject><issn>1749-4885</issn><issn>1749-4893</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kE1LAzEQhoMoWKs_wNuC52i-NtkcpVgVCoLoOWTTSWnZ3axJ9tB_b8qKePE0c3jed4YHoVtK7inhzUMStJYSE6owIbXE9RlaUCU0Fo3m5797U1-iq5QOheGasQVav4fQ4wz9CNHmKUI1dTlab1OuhjB0-wFsrNIILseQXBiPVfCVrdJ-2HVQ9aEDN3VwjS687RLc_Mwl-lw_faxe8Obt-XX1uMGOU5kxtwqU8s7zFohgVggpmBdaWCq2ICVVW6ctk17YrZO-bUWjrFPMMds2inK-RHdz7xjD1wQpm0OY4lBOGqqVVk0thSoUnSlXfk4RvBnjvrfxaCgxJ11m1mWKLnPSZeqSYXMmFXbYQfzT_G_oG1nVbk4</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Liebel, Matz</creator><creator>Toninelli, Costanza</creator><creator>van Hulst, Niek F.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>LK8</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0001-6220-3143</orcidid><orcidid>https://orcid.org/0000-0002-6843-058X</orcidid><orcidid>https://orcid.org/0000-0003-4630-1776</orcidid></search><sort><creationdate>20180101</creationdate><title>Room-temperature ultrafast nonlinear spectroscopy of a single molecule</title><author>Liebel, Matz ; Toninelli, Costanza ; van Hulst, Niek F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-3a7e77fcf3be042a44642f494a14de6617dc9a26f4adc6fbb487ac72c2ab87133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>639/624</topic><topic>639/638/439/945</topic><topic>639/638/440/527</topic><topic>639/925/927/1021</topic><topic>639/925/930/527</topic><topic>Applied and Technical Physics</topic><topic>Electron states</topic><topic>Electronic spectroscopy</topic><topic>Evolution</topic><topic>Excitation spectra</topic><topic>Fluorescence</topic><topic>Nonlinear response</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Room temperature</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Temporal resolution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liebel, Matz</creatorcontrib><creatorcontrib>Toninelli, Costanza</creatorcontrib><creatorcontrib>van Hulst, Niek F.</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nature photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liebel, Matz</au><au>Toninelli, Costanza</au><au>van Hulst, Niek F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Room-temperature ultrafast nonlinear spectroscopy of a single molecule</atitle><jtitle>Nature photonics</jtitle><stitle>Nature Photon</stitle><date>2018-01-01</date><risdate>2018</risdate><volume>12</volume><issue>1</issue><spage>45</spage><epage>49</epage><pages>45-49</pages><issn>1749-4885</issn><eissn>1749-4893</eissn><abstract>Single-molecule spectroscopy aims to unveil often hidden but potentially very important contributions of single entities to a system’s ensemble response. Albeit contributing tremendously to our ever growing understanding of molecular processes, the fundamental question of temporal evolution, or change, has thus far been inaccessible, thus painting a static picture of a dynamic world. Here, we finally resolve this dilemma by performing ultrafast time-resolved transient spectroscopy on a single molecule. By tracing the femtosecond evolution of excited electronic state spectra of single molecules over hundreds of nanometres of bandwidth at room temperature, we reveal their nonlinear ultrafast response in an effective three-pulse scheme with fluorescence detection. A first excitation pulse is followed by a phase-locked de-excitation pulse pair, providing spectral encoding with 25 fs temporal resolution. This experimental realization of true single-molecule transient spectroscopy demonstrates that two-dimensional electronic spectroscopy of single molecules is experimentally within reach. Frequency-resolved transient excited-state absorption of a single molecule is measured at room temperature. The dynamic Stokes shift and vibrational cooling are directly measured with 25 fs temporal resolution and a spectral detection bandwidth of hundreds of meV.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41566-017-0056-5</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-6220-3143</orcidid><orcidid>https://orcid.org/0000-0002-6843-058X</orcidid><orcidid>https://orcid.org/0000-0003-4630-1776</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1749-4885
ispartof Nature photonics, 2018-01, Vol.12 (1), p.45-49
issn 1749-4885
1749-4893
language eng
recordid cdi_proquest_journals_1979785647
source SpringerLink Journals; Nature Journals Online
subjects 639/624
639/638/439/945
639/638/440/527
639/925/927/1021
639/925/930/527
Applied and Technical Physics
Electron states
Electronic spectroscopy
Evolution
Excitation spectra
Fluorescence
Nonlinear response
Physics
Physics and Astronomy
Quantum Physics
Room temperature
Spectroscopy
Spectrum analysis
Temporal resolution
title Room-temperature ultrafast nonlinear spectroscopy of a single molecule
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T05%3A49%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Room-temperature%20ultrafast%20nonlinear%20spectroscopy%20of%20a%20single%20molecule&rft.jtitle=Nature%20photonics&rft.au=Liebel,%20Matz&rft.date=2018-01-01&rft.volume=12&rft.issue=1&rft.spage=45&rft.epage=49&rft.pages=45-49&rft.issn=1749-4885&rft.eissn=1749-4893&rft_id=info:doi/10.1038/s41566-017-0056-5&rft_dat=%3Cproquest_cross%3E1979785647%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1979785647&rft_id=info:pmid/&rfr_iscdi=true