Room-temperature ultrafast nonlinear spectroscopy of a single molecule
Single-molecule spectroscopy aims to unveil often hidden but potentially very important contributions of single entities to a system’s ensemble response. Albeit contributing tremendously to our ever growing understanding of molecular processes, the fundamental question of temporal evolution, or chan...
Gespeichert in:
Veröffentlicht in: | Nature photonics 2018-01, Vol.12 (1), p.45-49 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 49 |
---|---|
container_issue | 1 |
container_start_page | 45 |
container_title | Nature photonics |
container_volume | 12 |
creator | Liebel, Matz Toninelli, Costanza van Hulst, Niek F. |
description | Single-molecule spectroscopy aims to unveil often hidden but potentially very important contributions of single entities to a system’s ensemble response. Albeit contributing tremendously to our ever growing understanding of molecular processes, the fundamental question of temporal evolution, or change, has thus far been inaccessible, thus painting a static picture of a dynamic world. Here, we finally resolve this dilemma by performing ultrafast time-resolved transient spectroscopy on a single molecule. By tracing the femtosecond evolution of excited electronic state spectra of single molecules over hundreds of nanometres of bandwidth at room temperature, we reveal their nonlinear ultrafast response in an effective three-pulse scheme with fluorescence detection. A first excitation pulse is followed by a phase-locked de-excitation pulse pair, providing spectral encoding with 25 fs temporal resolution. This experimental realization of true single-molecule transient spectroscopy demonstrates that two-dimensional electronic spectroscopy of single molecules is experimentally within reach.
Frequency-resolved transient excited-state absorption of a single molecule is measured at room temperature. The dynamic Stokes shift and vibrational cooling are directly measured with 25 fs temporal resolution and a spectral detection bandwidth of hundreds of meV. |
doi_str_mv | 10.1038/s41566-017-0056-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1979785647</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1979785647</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-3a7e77fcf3be042a44642f494a14de6617dc9a26f4adc6fbb487ac72c2ab87133</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wNuC52i-NtkcpVgVCoLoOWTTSWnZ3axJ9tB_b8qKePE0c3jed4YHoVtK7inhzUMStJYSE6owIbXE9RlaUCU0Fo3m5797U1-iq5QOheGasQVav4fQ4wz9CNHmKUI1dTlab1OuhjB0-wFsrNIILseQXBiPVfCVrdJ-2HVQ9aEDN3VwjS687RLc_Mwl-lw_faxe8Obt-XX1uMGOU5kxtwqU8s7zFohgVggpmBdaWCq2ICVVW6ctk17YrZO-bUWjrFPMMds2inK-RHdz7xjD1wQpm0OY4lBOGqqVVk0thSoUnSlXfk4RvBnjvrfxaCgxJ11m1mWKLnPSZeqSYXMmFXbYQfzT_G_oG1nVbk4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1979785647</pqid></control><display><type>article</type><title>Room-temperature ultrafast nonlinear spectroscopy of a single molecule</title><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Liebel, Matz ; Toninelli, Costanza ; van Hulst, Niek F.</creator><creatorcontrib>Liebel, Matz ; Toninelli, Costanza ; van Hulst, Niek F.</creatorcontrib><description>Single-molecule spectroscopy aims to unveil often hidden but potentially very important contributions of single entities to a system’s ensemble response. Albeit contributing tremendously to our ever growing understanding of molecular processes, the fundamental question of temporal evolution, or change, has thus far been inaccessible, thus painting a static picture of a dynamic world. Here, we finally resolve this dilemma by performing ultrafast time-resolved transient spectroscopy on a single molecule. By tracing the femtosecond evolution of excited electronic state spectra of single molecules over hundreds of nanometres of bandwidth at room temperature, we reveal their nonlinear ultrafast response in an effective three-pulse scheme with fluorescence detection. A first excitation pulse is followed by a phase-locked de-excitation pulse pair, providing spectral encoding with 25 fs temporal resolution. This experimental realization of true single-molecule transient spectroscopy demonstrates that two-dimensional electronic spectroscopy of single molecules is experimentally within reach.
Frequency-resolved transient excited-state absorption of a single molecule is measured at room temperature. The dynamic Stokes shift and vibrational cooling are directly measured with 25 fs temporal resolution and a spectral detection bandwidth of hundreds of meV.</description><identifier>ISSN: 1749-4885</identifier><identifier>EISSN: 1749-4893</identifier><identifier>DOI: 10.1038/s41566-017-0056-5</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624 ; 639/638/439/945 ; 639/638/440/527 ; 639/925/927/1021 ; 639/925/930/527 ; Applied and Technical Physics ; Electron states ; Electronic spectroscopy ; Evolution ; Excitation spectra ; Fluorescence ; Nonlinear response ; Physics ; Physics and Astronomy ; Quantum Physics ; Room temperature ; Spectroscopy ; Spectrum analysis ; Temporal resolution</subject><ispartof>Nature photonics, 2018-01, Vol.12 (1), p.45-49</ispartof><rights>The Author(s) 2017</rights><rights>Copyright Nature Publishing Group Jan 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-3a7e77fcf3be042a44642f494a14de6617dc9a26f4adc6fbb487ac72c2ab87133</citedby><cites>FETCH-LOGICAL-c316t-3a7e77fcf3be042a44642f494a14de6617dc9a26f4adc6fbb487ac72c2ab87133</cites><orcidid>0000-0001-6220-3143 ; 0000-0002-6843-058X ; 0000-0003-4630-1776</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41566-017-0056-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41566-017-0056-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Liebel, Matz</creatorcontrib><creatorcontrib>Toninelli, Costanza</creatorcontrib><creatorcontrib>van Hulst, Niek F.</creatorcontrib><title>Room-temperature ultrafast nonlinear spectroscopy of a single molecule</title><title>Nature photonics</title><addtitle>Nature Photon</addtitle><description>Single-molecule spectroscopy aims to unveil often hidden but potentially very important contributions of single entities to a system’s ensemble response. Albeit contributing tremendously to our ever growing understanding of molecular processes, the fundamental question of temporal evolution, or change, has thus far been inaccessible, thus painting a static picture of a dynamic world. Here, we finally resolve this dilemma by performing ultrafast time-resolved transient spectroscopy on a single molecule. By tracing the femtosecond evolution of excited electronic state spectra of single molecules over hundreds of nanometres of bandwidth at room temperature, we reveal their nonlinear ultrafast response in an effective three-pulse scheme with fluorescence detection. A first excitation pulse is followed by a phase-locked de-excitation pulse pair, providing spectral encoding with 25 fs temporal resolution. This experimental realization of true single-molecule transient spectroscopy demonstrates that two-dimensional electronic spectroscopy of single molecules is experimentally within reach.
Frequency-resolved transient excited-state absorption of a single molecule is measured at room temperature. The dynamic Stokes shift and vibrational cooling are directly measured with 25 fs temporal resolution and a spectral detection bandwidth of hundreds of meV.</description><subject>639/624</subject><subject>639/638/439/945</subject><subject>639/638/440/527</subject><subject>639/925/927/1021</subject><subject>639/925/930/527</subject><subject>Applied and Technical Physics</subject><subject>Electron states</subject><subject>Electronic spectroscopy</subject><subject>Evolution</subject><subject>Excitation spectra</subject><subject>Fluorescence</subject><subject>Nonlinear response</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Room temperature</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Temporal resolution</subject><issn>1749-4885</issn><issn>1749-4893</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kE1LAzEQhoMoWKs_wNuC52i-NtkcpVgVCoLoOWTTSWnZ3axJ9tB_b8qKePE0c3jed4YHoVtK7inhzUMStJYSE6owIbXE9RlaUCU0Fo3m5797U1-iq5QOheGasQVav4fQ4wz9CNHmKUI1dTlab1OuhjB0-wFsrNIILseQXBiPVfCVrdJ-2HVQ9aEDN3VwjS687RLc_Mwl-lw_faxe8Obt-XX1uMGOU5kxtwqU8s7zFohgVggpmBdaWCq2ICVVW6ctk17YrZO-bUWjrFPMMds2inK-RHdz7xjD1wQpm0OY4lBOGqqVVk0thSoUnSlXfk4RvBnjvrfxaCgxJ11m1mWKLnPSZeqSYXMmFXbYQfzT_G_oG1nVbk4</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Liebel, Matz</creator><creator>Toninelli, Costanza</creator><creator>van Hulst, Niek F.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>LK8</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0001-6220-3143</orcidid><orcidid>https://orcid.org/0000-0002-6843-058X</orcidid><orcidid>https://orcid.org/0000-0003-4630-1776</orcidid></search><sort><creationdate>20180101</creationdate><title>Room-temperature ultrafast nonlinear spectroscopy of a single molecule</title><author>Liebel, Matz ; Toninelli, Costanza ; van Hulst, Niek F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-3a7e77fcf3be042a44642f494a14de6617dc9a26f4adc6fbb487ac72c2ab87133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>639/624</topic><topic>639/638/439/945</topic><topic>639/638/440/527</topic><topic>639/925/927/1021</topic><topic>639/925/930/527</topic><topic>Applied and Technical Physics</topic><topic>Electron states</topic><topic>Electronic spectroscopy</topic><topic>Evolution</topic><topic>Excitation spectra</topic><topic>Fluorescence</topic><topic>Nonlinear response</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Room temperature</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Temporal resolution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liebel, Matz</creatorcontrib><creatorcontrib>Toninelli, Costanza</creatorcontrib><creatorcontrib>van Hulst, Niek F.</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nature photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liebel, Matz</au><au>Toninelli, Costanza</au><au>van Hulst, Niek F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Room-temperature ultrafast nonlinear spectroscopy of a single molecule</atitle><jtitle>Nature photonics</jtitle><stitle>Nature Photon</stitle><date>2018-01-01</date><risdate>2018</risdate><volume>12</volume><issue>1</issue><spage>45</spage><epage>49</epage><pages>45-49</pages><issn>1749-4885</issn><eissn>1749-4893</eissn><abstract>Single-molecule spectroscopy aims to unveil often hidden but potentially very important contributions of single entities to a system’s ensemble response. Albeit contributing tremendously to our ever growing understanding of molecular processes, the fundamental question of temporal evolution, or change, has thus far been inaccessible, thus painting a static picture of a dynamic world. Here, we finally resolve this dilemma by performing ultrafast time-resolved transient spectroscopy on a single molecule. By tracing the femtosecond evolution of excited electronic state spectra of single molecules over hundreds of nanometres of bandwidth at room temperature, we reveal their nonlinear ultrafast response in an effective three-pulse scheme with fluorescence detection. A first excitation pulse is followed by a phase-locked de-excitation pulse pair, providing spectral encoding with 25 fs temporal resolution. This experimental realization of true single-molecule transient spectroscopy demonstrates that two-dimensional electronic spectroscopy of single molecules is experimentally within reach.
Frequency-resolved transient excited-state absorption of a single molecule is measured at room temperature. The dynamic Stokes shift and vibrational cooling are directly measured with 25 fs temporal resolution and a spectral detection bandwidth of hundreds of meV.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41566-017-0056-5</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-6220-3143</orcidid><orcidid>https://orcid.org/0000-0002-6843-058X</orcidid><orcidid>https://orcid.org/0000-0003-4630-1776</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1749-4885 |
ispartof | Nature photonics, 2018-01, Vol.12 (1), p.45-49 |
issn | 1749-4885 1749-4893 |
language | eng |
recordid | cdi_proquest_journals_1979785647 |
source | SpringerLink Journals; Nature Journals Online |
subjects | 639/624 639/638/439/945 639/638/440/527 639/925/927/1021 639/925/930/527 Applied and Technical Physics Electron states Electronic spectroscopy Evolution Excitation spectra Fluorescence Nonlinear response Physics Physics and Astronomy Quantum Physics Room temperature Spectroscopy Spectrum analysis Temporal resolution |
title | Room-temperature ultrafast nonlinear spectroscopy of a single molecule |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T05%3A49%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Room-temperature%20ultrafast%20nonlinear%20spectroscopy%20of%20a%20single%20molecule&rft.jtitle=Nature%20photonics&rft.au=Liebel,%20Matz&rft.date=2018-01-01&rft.volume=12&rft.issue=1&rft.spage=45&rft.epage=49&rft.pages=45-49&rft.issn=1749-4885&rft.eissn=1749-4893&rft_id=info:doi/10.1038/s41566-017-0056-5&rft_dat=%3Cproquest_cross%3E1979785647%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1979785647&rft_id=info:pmid/&rfr_iscdi=true |