Fast medical image registration using bidirectional empirical mode decomposition

This paper focuses on an acceleration of the mutual information maximization method for medical image registration. Our approach is based on fast adaptive bidirectional empirical mode decomposition (FABEMD). The registration is performed for the informative intrinsic image modes. It aims to reduce t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Signal processing. Image communication 2017-11, Vol.59, p.12-17
Hauptverfasser: Guryanov, Fedor, Krylov, Andrey
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17
container_issue
container_start_page 12
container_title Signal processing. Image communication
container_volume 59
creator Guryanov, Fedor
Krylov, Andrey
description This paper focuses on an acceleration of the mutual information maximization method for medical image registration. Our approach is based on fast adaptive bidirectional empirical mode decomposition (FABEMD). The registration is performed for the informative intrinsic image modes. It aims to reduce the computational complexity of the mutual entropy maximization algorithm by extracting only essential data. Optimization process consists of several steps: image structural reduction using FABEMD, sequential parameters search, image downsampling, and, finally, multilevel parametric space search. We compare our approach to standard mutual information maximization method (MMI) and analyze results for multimodal medical images. Experiments show that proposed method produces consistent results very close to MMI, while reducing the registration time by 200 time on average. •A new fast medical image registering algorithm is proposed.•The algorithm is an optimization of the mutual entropy maximization based method.•The optimization uses fast adaptive bidirectional empirical mode decomposition.•The method reduces the computational complexity of the mutual entropy maximization.
doi_str_mv 10.1016/j.image.2017.04.003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1979135430</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0923596517300693</els_id><sourcerecordid>1979135430</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-9c400b802706f40ad43fdd2426bd9d5ccffab1984591dfdaf80229bdda686da63</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-Ai8Fz62Tj37k4EEWV4UFPeg5pPkoKdtNTbqC_95069nLDMy87zDvg9AthgIDru77wg2yMwUBXBfACgB6hla4qXlOqro-RyvghOYlr8pLdBVjDwCEAV-h962MUzYY7ZTcZ6crWTCdi1OQk_OH7Bjdoctap10wap4kmRlGF06GwWuTaaP8MPro5vU1urByH83NX1-jz-3Tx-Yl3709v24ed7miFE85VwygbYDUUFkGUjNqtSaMVK3mulTKWtli3rCSY221tElKeKu1rJoqFbpGd8vdMfivo4mT6P0xpO-iwLzmmJaMQlLRRaWCjzEYK8aQQoYfgUHM6EQvTqHFjE4AEwldcj0sLpMCfDsTRFTOHJRZIAjt3b_-X8OMecY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1979135430</pqid></control><display><type>article</type><title>Fast medical image registration using bidirectional empirical mode decomposition</title><source>Elsevier ScienceDirect Journals</source><creator>Guryanov, Fedor ; Krylov, Andrey</creator><creatorcontrib>Guryanov, Fedor ; Krylov, Andrey</creatorcontrib><description>This paper focuses on an acceleration of the mutual information maximization method for medical image registration. Our approach is based on fast adaptive bidirectional empirical mode decomposition (FABEMD). The registration is performed for the informative intrinsic image modes. It aims to reduce the computational complexity of the mutual entropy maximization algorithm by extracting only essential data. Optimization process consists of several steps: image structural reduction using FABEMD, sequential parameters search, image downsampling, and, finally, multilevel parametric space search. We compare our approach to standard mutual information maximization method (MMI) and analyze results for multimodal medical images. Experiments show that proposed method produces consistent results very close to MMI, while reducing the registration time by 200 time on average. •A new fast medical image registering algorithm is proposed.•The algorithm is an optimization of the mutual entropy maximization based method.•The optimization uses fast adaptive bidirectional empirical mode decomposition.•The method reduces the computational complexity of the mutual entropy maximization.</description><identifier>ISSN: 0923-5965</identifier><identifier>EISSN: 1879-2677</identifier><identifier>DOI: 10.1016/j.image.2017.04.003</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Bidirectional empirical mode decomposition ; Empirical analysis ; Entropy ; Experiments ; Fast method ; Image registration ; Maximization ; Medical image registration ; Medical imaging ; Multilevel ; Mutual information maximization ; Optimization</subject><ispartof>Signal processing. Image communication, 2017-11, Vol.59, p.12-17</ispartof><rights>2017 Elsevier B.V.</rights><rights>Copyright Elsevier BV Nov 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-9c400b802706f40ad43fdd2426bd9d5ccffab1984591dfdaf80229bdda686da63</citedby><cites>FETCH-LOGICAL-c331t-9c400b802706f40ad43fdd2426bd9d5ccffab1984591dfdaf80229bdda686da63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0923596517300693$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Guryanov, Fedor</creatorcontrib><creatorcontrib>Krylov, Andrey</creatorcontrib><title>Fast medical image registration using bidirectional empirical mode decomposition</title><title>Signal processing. Image communication</title><description>This paper focuses on an acceleration of the mutual information maximization method for medical image registration. Our approach is based on fast adaptive bidirectional empirical mode decomposition (FABEMD). The registration is performed for the informative intrinsic image modes. It aims to reduce the computational complexity of the mutual entropy maximization algorithm by extracting only essential data. Optimization process consists of several steps: image structural reduction using FABEMD, sequential parameters search, image downsampling, and, finally, multilevel parametric space search. We compare our approach to standard mutual information maximization method (MMI) and analyze results for multimodal medical images. Experiments show that proposed method produces consistent results very close to MMI, while reducing the registration time by 200 time on average. •A new fast medical image registering algorithm is proposed.•The algorithm is an optimization of the mutual entropy maximization based method.•The optimization uses fast adaptive bidirectional empirical mode decomposition.•The method reduces the computational complexity of the mutual entropy maximization.</description><subject>Bidirectional empirical mode decomposition</subject><subject>Empirical analysis</subject><subject>Entropy</subject><subject>Experiments</subject><subject>Fast method</subject><subject>Image registration</subject><subject>Maximization</subject><subject>Medical image registration</subject><subject>Medical imaging</subject><subject>Multilevel</subject><subject>Mutual information maximization</subject><subject>Optimization</subject><issn>0923-5965</issn><issn>1879-2677</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-Ai8Fz62Tj37k4EEWV4UFPeg5pPkoKdtNTbqC_95069nLDMy87zDvg9AthgIDru77wg2yMwUBXBfACgB6hla4qXlOqro-RyvghOYlr8pLdBVjDwCEAV-h962MUzYY7ZTcZ6crWTCdi1OQk_OH7Bjdoctap10wap4kmRlGF06GwWuTaaP8MPro5vU1urByH83NX1-jz-3Tx-Yl3709v24ed7miFE85VwygbYDUUFkGUjNqtSaMVK3mulTKWtli3rCSY221tElKeKu1rJoqFbpGd8vdMfivo4mT6P0xpO-iwLzmmJaMQlLRRaWCjzEYK8aQQoYfgUHM6EQvTqHFjE4AEwldcj0sLpMCfDsTRFTOHJRZIAjt3b_-X8OMecY</recordid><startdate>201711</startdate><enddate>201711</enddate><creator>Guryanov, Fedor</creator><creator>Krylov, Andrey</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201711</creationdate><title>Fast medical image registration using bidirectional empirical mode decomposition</title><author>Guryanov, Fedor ; Krylov, Andrey</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-9c400b802706f40ad43fdd2426bd9d5ccffab1984591dfdaf80229bdda686da63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bidirectional empirical mode decomposition</topic><topic>Empirical analysis</topic><topic>Entropy</topic><topic>Experiments</topic><topic>Fast method</topic><topic>Image registration</topic><topic>Maximization</topic><topic>Medical image registration</topic><topic>Medical imaging</topic><topic>Multilevel</topic><topic>Mutual information maximization</topic><topic>Optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guryanov, Fedor</creatorcontrib><creatorcontrib>Krylov, Andrey</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Signal processing. Image communication</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guryanov, Fedor</au><au>Krylov, Andrey</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast medical image registration using bidirectional empirical mode decomposition</atitle><jtitle>Signal processing. Image communication</jtitle><date>2017-11</date><risdate>2017</risdate><volume>59</volume><spage>12</spage><epage>17</epage><pages>12-17</pages><issn>0923-5965</issn><eissn>1879-2677</eissn><abstract>This paper focuses on an acceleration of the mutual information maximization method for medical image registration. Our approach is based on fast adaptive bidirectional empirical mode decomposition (FABEMD). The registration is performed for the informative intrinsic image modes. It aims to reduce the computational complexity of the mutual entropy maximization algorithm by extracting only essential data. Optimization process consists of several steps: image structural reduction using FABEMD, sequential parameters search, image downsampling, and, finally, multilevel parametric space search. We compare our approach to standard mutual information maximization method (MMI) and analyze results for multimodal medical images. Experiments show that proposed method produces consistent results very close to MMI, while reducing the registration time by 200 time on average. •A new fast medical image registering algorithm is proposed.•The algorithm is an optimization of the mutual entropy maximization based method.•The optimization uses fast adaptive bidirectional empirical mode decomposition.•The method reduces the computational complexity of the mutual entropy maximization.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.image.2017.04.003</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0923-5965
ispartof Signal processing. Image communication, 2017-11, Vol.59, p.12-17
issn 0923-5965
1879-2677
language eng
recordid cdi_proquest_journals_1979135430
source Elsevier ScienceDirect Journals
subjects Bidirectional empirical mode decomposition
Empirical analysis
Entropy
Experiments
Fast method
Image registration
Maximization
Medical image registration
Medical imaging
Multilevel
Mutual information maximization
Optimization
title Fast medical image registration using bidirectional empirical mode decomposition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T04%3A28%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20medical%20image%20registration%20using%20bidirectional%20empirical%20mode%20decomposition&rft.jtitle=Signal%20processing.%20Image%20communication&rft.au=Guryanov,%20Fedor&rft.date=2017-11&rft.volume=59&rft.spage=12&rft.epage=17&rft.pages=12-17&rft.issn=0923-5965&rft.eissn=1879-2677&rft_id=info:doi/10.1016/j.image.2017.04.003&rft_dat=%3Cproquest_cross%3E1979135430%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1979135430&rft_id=info:pmid/&rft_els_id=S0923596517300693&rfr_iscdi=true