Fast medical image registration using bidirectional empirical mode decomposition
This paper focuses on an acceleration of the mutual information maximization method for medical image registration. Our approach is based on fast adaptive bidirectional empirical mode decomposition (FABEMD). The registration is performed for the informative intrinsic image modes. It aims to reduce t...
Gespeichert in:
Veröffentlicht in: | Signal processing. Image communication 2017-11, Vol.59, p.12-17 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17 |
---|---|
container_issue | |
container_start_page | 12 |
container_title | Signal processing. Image communication |
container_volume | 59 |
creator | Guryanov, Fedor Krylov, Andrey |
description | This paper focuses on an acceleration of the mutual information maximization method for medical image registration. Our approach is based on fast adaptive bidirectional empirical mode decomposition (FABEMD). The registration is performed for the informative intrinsic image modes. It aims to reduce the computational complexity of the mutual entropy maximization algorithm by extracting only essential data. Optimization process consists of several steps: image structural reduction using FABEMD, sequential parameters search, image downsampling, and, finally, multilevel parametric space search. We compare our approach to standard mutual information maximization method (MMI) and analyze results for multimodal medical images. Experiments show that proposed method produces consistent results very close to MMI, while reducing the registration time by 200 time on average.
•A new fast medical image registering algorithm is proposed.•The algorithm is an optimization of the mutual entropy maximization based method.•The optimization uses fast adaptive bidirectional empirical mode decomposition.•The method reduces the computational complexity of the mutual entropy maximization. |
doi_str_mv | 10.1016/j.image.2017.04.003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1979135430</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0923596517300693</els_id><sourcerecordid>1979135430</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-9c400b802706f40ad43fdd2426bd9d5ccffab1984591dfdaf80229bdda686da63</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-Ai8Fz62Tj37k4EEWV4UFPeg5pPkoKdtNTbqC_95069nLDMy87zDvg9AthgIDru77wg2yMwUBXBfACgB6hla4qXlOqro-RyvghOYlr8pLdBVjDwCEAV-h962MUzYY7ZTcZ6crWTCdi1OQk_OH7Bjdoctap10wap4kmRlGF06GwWuTaaP8MPro5vU1urByH83NX1-jz-3Tx-Yl3709v24ed7miFE85VwygbYDUUFkGUjNqtSaMVK3mulTKWtli3rCSY221tElKeKu1rJoqFbpGd8vdMfivo4mT6P0xpO-iwLzmmJaMQlLRRaWCjzEYK8aQQoYfgUHM6EQvTqHFjE4AEwldcj0sLpMCfDsTRFTOHJRZIAjt3b_-X8OMecY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1979135430</pqid></control><display><type>article</type><title>Fast medical image registration using bidirectional empirical mode decomposition</title><source>Elsevier ScienceDirect Journals</source><creator>Guryanov, Fedor ; Krylov, Andrey</creator><creatorcontrib>Guryanov, Fedor ; Krylov, Andrey</creatorcontrib><description>This paper focuses on an acceleration of the mutual information maximization method for medical image registration. Our approach is based on fast adaptive bidirectional empirical mode decomposition (FABEMD). The registration is performed for the informative intrinsic image modes. It aims to reduce the computational complexity of the mutual entropy maximization algorithm by extracting only essential data. Optimization process consists of several steps: image structural reduction using FABEMD, sequential parameters search, image downsampling, and, finally, multilevel parametric space search. We compare our approach to standard mutual information maximization method (MMI) and analyze results for multimodal medical images. Experiments show that proposed method produces consistent results very close to MMI, while reducing the registration time by 200 time on average.
•A new fast medical image registering algorithm is proposed.•The algorithm is an optimization of the mutual entropy maximization based method.•The optimization uses fast adaptive bidirectional empirical mode decomposition.•The method reduces the computational complexity of the mutual entropy maximization.</description><identifier>ISSN: 0923-5965</identifier><identifier>EISSN: 1879-2677</identifier><identifier>DOI: 10.1016/j.image.2017.04.003</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Bidirectional empirical mode decomposition ; Empirical analysis ; Entropy ; Experiments ; Fast method ; Image registration ; Maximization ; Medical image registration ; Medical imaging ; Multilevel ; Mutual information maximization ; Optimization</subject><ispartof>Signal processing. Image communication, 2017-11, Vol.59, p.12-17</ispartof><rights>2017 Elsevier B.V.</rights><rights>Copyright Elsevier BV Nov 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-9c400b802706f40ad43fdd2426bd9d5ccffab1984591dfdaf80229bdda686da63</citedby><cites>FETCH-LOGICAL-c331t-9c400b802706f40ad43fdd2426bd9d5ccffab1984591dfdaf80229bdda686da63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0923596517300693$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Guryanov, Fedor</creatorcontrib><creatorcontrib>Krylov, Andrey</creatorcontrib><title>Fast medical image registration using bidirectional empirical mode decomposition</title><title>Signal processing. Image communication</title><description>This paper focuses on an acceleration of the mutual information maximization method for medical image registration. Our approach is based on fast adaptive bidirectional empirical mode decomposition (FABEMD). The registration is performed for the informative intrinsic image modes. It aims to reduce the computational complexity of the mutual entropy maximization algorithm by extracting only essential data. Optimization process consists of several steps: image structural reduction using FABEMD, sequential parameters search, image downsampling, and, finally, multilevel parametric space search. We compare our approach to standard mutual information maximization method (MMI) and analyze results for multimodal medical images. Experiments show that proposed method produces consistent results very close to MMI, while reducing the registration time by 200 time on average.
•A new fast medical image registering algorithm is proposed.•The algorithm is an optimization of the mutual entropy maximization based method.•The optimization uses fast adaptive bidirectional empirical mode decomposition.•The method reduces the computational complexity of the mutual entropy maximization.</description><subject>Bidirectional empirical mode decomposition</subject><subject>Empirical analysis</subject><subject>Entropy</subject><subject>Experiments</subject><subject>Fast method</subject><subject>Image registration</subject><subject>Maximization</subject><subject>Medical image registration</subject><subject>Medical imaging</subject><subject>Multilevel</subject><subject>Mutual information maximization</subject><subject>Optimization</subject><issn>0923-5965</issn><issn>1879-2677</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-Ai8Fz62Tj37k4EEWV4UFPeg5pPkoKdtNTbqC_95069nLDMy87zDvg9AthgIDru77wg2yMwUBXBfACgB6hla4qXlOqro-RyvghOYlr8pLdBVjDwCEAV-h962MUzYY7ZTcZ6crWTCdi1OQk_OH7Bjdoctap10wap4kmRlGF06GwWuTaaP8MPro5vU1urByH83NX1-jz-3Tx-Yl3709v24ed7miFE85VwygbYDUUFkGUjNqtSaMVK3mulTKWtli3rCSY221tElKeKu1rJoqFbpGd8vdMfivo4mT6P0xpO-iwLzmmJaMQlLRRaWCjzEYK8aQQoYfgUHM6EQvTqHFjE4AEwldcj0sLpMCfDsTRFTOHJRZIAjt3b_-X8OMecY</recordid><startdate>201711</startdate><enddate>201711</enddate><creator>Guryanov, Fedor</creator><creator>Krylov, Andrey</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201711</creationdate><title>Fast medical image registration using bidirectional empirical mode decomposition</title><author>Guryanov, Fedor ; Krylov, Andrey</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-9c400b802706f40ad43fdd2426bd9d5ccffab1984591dfdaf80229bdda686da63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bidirectional empirical mode decomposition</topic><topic>Empirical analysis</topic><topic>Entropy</topic><topic>Experiments</topic><topic>Fast method</topic><topic>Image registration</topic><topic>Maximization</topic><topic>Medical image registration</topic><topic>Medical imaging</topic><topic>Multilevel</topic><topic>Mutual information maximization</topic><topic>Optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guryanov, Fedor</creatorcontrib><creatorcontrib>Krylov, Andrey</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Signal processing. Image communication</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guryanov, Fedor</au><au>Krylov, Andrey</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast medical image registration using bidirectional empirical mode decomposition</atitle><jtitle>Signal processing. Image communication</jtitle><date>2017-11</date><risdate>2017</risdate><volume>59</volume><spage>12</spage><epage>17</epage><pages>12-17</pages><issn>0923-5965</issn><eissn>1879-2677</eissn><abstract>This paper focuses on an acceleration of the mutual information maximization method for medical image registration. Our approach is based on fast adaptive bidirectional empirical mode decomposition (FABEMD). The registration is performed for the informative intrinsic image modes. It aims to reduce the computational complexity of the mutual entropy maximization algorithm by extracting only essential data. Optimization process consists of several steps: image structural reduction using FABEMD, sequential parameters search, image downsampling, and, finally, multilevel parametric space search. We compare our approach to standard mutual information maximization method (MMI) and analyze results for multimodal medical images. Experiments show that proposed method produces consistent results very close to MMI, while reducing the registration time by 200 time on average.
•A new fast medical image registering algorithm is proposed.•The algorithm is an optimization of the mutual entropy maximization based method.•The optimization uses fast adaptive bidirectional empirical mode decomposition.•The method reduces the computational complexity of the mutual entropy maximization.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.image.2017.04.003</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0923-5965 |
ispartof | Signal processing. Image communication, 2017-11, Vol.59, p.12-17 |
issn | 0923-5965 1879-2677 |
language | eng |
recordid | cdi_proquest_journals_1979135430 |
source | Elsevier ScienceDirect Journals |
subjects | Bidirectional empirical mode decomposition Empirical analysis Entropy Experiments Fast method Image registration Maximization Medical image registration Medical imaging Multilevel Mutual information maximization Optimization |
title | Fast medical image registration using bidirectional empirical mode decomposition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T04%3A28%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20medical%20image%20registration%20using%20bidirectional%20empirical%20mode%20decomposition&rft.jtitle=Signal%20processing.%20Image%20communication&rft.au=Guryanov,%20Fedor&rft.date=2017-11&rft.volume=59&rft.spage=12&rft.epage=17&rft.pages=12-17&rft.issn=0923-5965&rft.eissn=1879-2677&rft_id=info:doi/10.1016/j.image.2017.04.003&rft_dat=%3Cproquest_cross%3E1979135430%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1979135430&rft_id=info:pmid/&rft_els_id=S0923596517300693&rfr_iscdi=true |