Linearity Evaluation and Variable Subset Partition Based Hierarchical Process Modeling and Monitoring

Complex industrial processes may be formulated with hybrid correlations, indicating that linear and nonlinear relationships simultaneously exist among process variables, which brings great challenges for process monitoring. However, previous work did not consider the hybrid correlations and treated...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial electronics (1982) 2018-03, Vol.65 (3), p.2683-2692
Hauptverfasser: Li, Wenqing, Zhao, Chunhui, Gao, Furong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2692
container_issue 3
container_start_page 2683
container_title IEEE transactions on industrial electronics (1982)
container_volume 65
creator Li, Wenqing
Zhao, Chunhui
Gao, Furong
description Complex industrial processes may be formulated with hybrid correlations, indicating that linear and nonlinear relationships simultaneously exist among process variables, which brings great challenges for process monitoring. However, previous work did not consider the hybrid correlations and treated all the variables as a single subject in which single linear or nonlinear analysis method was employed based on prior process knowledge or some evaluation results, which may degrade the model accuracy and monitoring performance. Therefore, for complex processes with hybrid correlations, this paper proposes a linearity evaluation and variable subset partition based hierarchical modeling and monitoring method. First, linear variable subsets are separated from nonlinear subsets through an iterative variable correlation evaluation procedure. Second, hierarchical models are developed to capture linear patterns and nonlinear patterns in different levels. Third, a hierarchical monitoring strategy is proposed to monitor linear feature and nonlinear feature separately. By separating and modeling different types of variable correlations, the proposed method can explore more accurate process characteristics and thus improve the fault detection ability. Numerical examples and industrial applications are presented to illustrate its efficiency.
doi_str_mv 10.1109/TIE.2017.2745452
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1978749583</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8017442</ieee_id><sourcerecordid>1978749583</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-d330029c34f9dbce691fd9c75278fa9d858060fc83d6aab5ec930b67f992dba53</originalsourceid><addsrcrecordid>eNo9kM1LAzEQxYMoWKt3wUvA89Z8bjZHLdUWWixYvYZsktWUdVOTrdD_3vQDT8PM_N6b4QFwi9EIYyQfVrPJiCAsRkQwzjg5AwPMuSikZNU5GCAiqgIhVl6Cq5TWCGHGMR8AN_ed09H3Ozj51e1W9z50UHcWfuSprlsH37Z1cj1c6tj7w_ZJJ2fh1Luoo_nyRrdwGYNxKcFFsK713efBYRE634eY22tw0eg2uZtTHYL358lqPC3mry-z8eO8METivrCUIkSkoayRtjaulLix0gien2-0tBWvUIkaU1Fbal1zZyRFdSkaKYmtNadDcH_03cTws3WpV-uwjV0-qbAUlWCSVzRT6EiZGFKKrlGb6L913CmM1D5MlcNU-zDVKcwsuTtKvHPuH68ywhihf033cUs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1978749583</pqid></control><display><type>article</type><title>Linearity Evaluation and Variable Subset Partition Based Hierarchical Process Modeling and Monitoring</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Wenqing ; Zhao, Chunhui ; Gao, Furong</creator><creatorcontrib>Li, Wenqing ; Zhao, Chunhui ; Gao, Furong</creatorcontrib><description>Complex industrial processes may be formulated with hybrid correlations, indicating that linear and nonlinear relationships simultaneously exist among process variables, which brings great challenges for process monitoring. However, previous work did not consider the hybrid correlations and treated all the variables as a single subject in which single linear or nonlinear analysis method was employed based on prior process knowledge or some evaluation results, which may degrade the model accuracy and monitoring performance. Therefore, for complex processes with hybrid correlations, this paper proposes a linearity evaluation and variable subset partition based hierarchical modeling and monitoring method. First, linear variable subsets are separated from nonlinear subsets through an iterative variable correlation evaluation procedure. Second, hierarchical models are developed to capture linear patterns and nonlinear patterns in different levels. Third, a hierarchical monitoring strategy is proposed to monitor linear feature and nonlinear feature separately. By separating and modeling different types of variable correlations, the proposed method can explore more accurate process characteristics and thus improve the fault detection ability. Numerical examples and industrial applications are presented to illustrate its efficiency.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2017.2745452</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Correlation ; Covariance matrices ; Fault detection ; Feature extraction ; Hierarchical modeling and monitoring ; Industrial applications ; Iterative methods ; Kernel ; linear correlations and nonlinear correlations ; Linearity ; Mathematical models ; Model accuracy ; Monitoring ; Nonlinear analysis ; Partitions ; Principal component analysis ; process monitoring ; Process variables ; variable separation</subject><ispartof>IEEE transactions on industrial electronics (1982), 2018-03, Vol.65 (3), p.2683-2692</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-d330029c34f9dbce691fd9c75278fa9d858060fc83d6aab5ec930b67f992dba53</citedby><cites>FETCH-LOGICAL-c291t-d330029c34f9dbce691fd9c75278fa9d858060fc83d6aab5ec930b67f992dba53</cites><orcidid>0000-0001-5612-9899 ; 0000-0002-0254-5763</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8017442$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8017442$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Wenqing</creatorcontrib><creatorcontrib>Zhao, Chunhui</creatorcontrib><creatorcontrib>Gao, Furong</creatorcontrib><title>Linearity Evaluation and Variable Subset Partition Based Hierarchical Process Modeling and Monitoring</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>Complex industrial processes may be formulated with hybrid correlations, indicating that linear and nonlinear relationships simultaneously exist among process variables, which brings great challenges for process monitoring. However, previous work did not consider the hybrid correlations and treated all the variables as a single subject in which single linear or nonlinear analysis method was employed based on prior process knowledge or some evaluation results, which may degrade the model accuracy and monitoring performance. Therefore, for complex processes with hybrid correlations, this paper proposes a linearity evaluation and variable subset partition based hierarchical modeling and monitoring method. First, linear variable subsets are separated from nonlinear subsets through an iterative variable correlation evaluation procedure. Second, hierarchical models are developed to capture linear patterns and nonlinear patterns in different levels. Third, a hierarchical monitoring strategy is proposed to monitor linear feature and nonlinear feature separately. By separating and modeling different types of variable correlations, the proposed method can explore more accurate process characteristics and thus improve the fault detection ability. Numerical examples and industrial applications are presented to illustrate its efficiency.</description><subject>Correlation</subject><subject>Covariance matrices</subject><subject>Fault detection</subject><subject>Feature extraction</subject><subject>Hierarchical modeling and monitoring</subject><subject>Industrial applications</subject><subject>Iterative methods</subject><subject>Kernel</subject><subject>linear correlations and nonlinear correlations</subject><subject>Linearity</subject><subject>Mathematical models</subject><subject>Model accuracy</subject><subject>Monitoring</subject><subject>Nonlinear analysis</subject><subject>Partitions</subject><subject>Principal component analysis</subject><subject>process monitoring</subject><subject>Process variables</subject><subject>variable separation</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1LAzEQxYMoWKt3wUvA89Z8bjZHLdUWWixYvYZsktWUdVOTrdD_3vQDT8PM_N6b4QFwi9EIYyQfVrPJiCAsRkQwzjg5AwPMuSikZNU5GCAiqgIhVl6Cq5TWCGHGMR8AN_ed09H3Ozj51e1W9z50UHcWfuSprlsH37Z1cj1c6tj7w_ZJJ2fh1Luoo_nyRrdwGYNxKcFFsK713efBYRE634eY22tw0eg2uZtTHYL358lqPC3mry-z8eO8METivrCUIkSkoayRtjaulLix0gien2-0tBWvUIkaU1Fbal1zZyRFdSkaKYmtNadDcH_03cTws3WpV-uwjV0-qbAUlWCSVzRT6EiZGFKKrlGb6L913CmM1D5MlcNU-zDVKcwsuTtKvHPuH68ywhihf033cUs</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Li, Wenqing</creator><creator>Zhao, Chunhui</creator><creator>Gao, Furong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5612-9899</orcidid><orcidid>https://orcid.org/0000-0002-0254-5763</orcidid></search><sort><creationdate>20180301</creationdate><title>Linearity Evaluation and Variable Subset Partition Based Hierarchical Process Modeling and Monitoring</title><author>Li, Wenqing ; Zhao, Chunhui ; Gao, Furong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-d330029c34f9dbce691fd9c75278fa9d858060fc83d6aab5ec930b67f992dba53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Correlation</topic><topic>Covariance matrices</topic><topic>Fault detection</topic><topic>Feature extraction</topic><topic>Hierarchical modeling and monitoring</topic><topic>Industrial applications</topic><topic>Iterative methods</topic><topic>Kernel</topic><topic>linear correlations and nonlinear correlations</topic><topic>Linearity</topic><topic>Mathematical models</topic><topic>Model accuracy</topic><topic>Monitoring</topic><topic>Nonlinear analysis</topic><topic>Partitions</topic><topic>Principal component analysis</topic><topic>process monitoring</topic><topic>Process variables</topic><topic>variable separation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Wenqing</creatorcontrib><creatorcontrib>Zhao, Chunhui</creatorcontrib><creatorcontrib>Gao, Furong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Wenqing</au><au>Zhao, Chunhui</au><au>Gao, Furong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linearity Evaluation and Variable Subset Partition Based Hierarchical Process Modeling and Monitoring</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2018-03-01</date><risdate>2018</risdate><volume>65</volume><issue>3</issue><spage>2683</spage><epage>2692</epage><pages>2683-2692</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>Complex industrial processes may be formulated with hybrid correlations, indicating that linear and nonlinear relationships simultaneously exist among process variables, which brings great challenges for process monitoring. However, previous work did not consider the hybrid correlations and treated all the variables as a single subject in which single linear or nonlinear analysis method was employed based on prior process knowledge or some evaluation results, which may degrade the model accuracy and monitoring performance. Therefore, for complex processes with hybrid correlations, this paper proposes a linearity evaluation and variable subset partition based hierarchical modeling and monitoring method. First, linear variable subsets are separated from nonlinear subsets through an iterative variable correlation evaluation procedure. Second, hierarchical models are developed to capture linear patterns and nonlinear patterns in different levels. Third, a hierarchical monitoring strategy is proposed to monitor linear feature and nonlinear feature separately. By separating and modeling different types of variable correlations, the proposed method can explore more accurate process characteristics and thus improve the fault detection ability. Numerical examples and industrial applications are presented to illustrate its efficiency.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2017.2745452</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5612-9899</orcidid><orcidid>https://orcid.org/0000-0002-0254-5763</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0046
ispartof IEEE transactions on industrial electronics (1982), 2018-03, Vol.65 (3), p.2683-2692
issn 0278-0046
1557-9948
language eng
recordid cdi_proquest_journals_1978749583
source IEEE Electronic Library (IEL)
subjects Correlation
Covariance matrices
Fault detection
Feature extraction
Hierarchical modeling and monitoring
Industrial applications
Iterative methods
Kernel
linear correlations and nonlinear correlations
Linearity
Mathematical models
Model accuracy
Monitoring
Nonlinear analysis
Partitions
Principal component analysis
process monitoring
Process variables
variable separation
title Linearity Evaluation and Variable Subset Partition Based Hierarchical Process Modeling and Monitoring
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T22%3A09%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linearity%20Evaluation%20and%20Variable%20Subset%20Partition%20Based%20Hierarchical%20Process%20Modeling%20and%20Monitoring&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Li,%20Wenqing&rft.date=2018-03-01&rft.volume=65&rft.issue=3&rft.spage=2683&rft.epage=2692&rft.pages=2683-2692&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2017.2745452&rft_dat=%3Cproquest_RIE%3E1978749583%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1978749583&rft_id=info:pmid/&rft_ieee_id=8017442&rfr_iscdi=true