Linearity Evaluation and Variable Subset Partition Based Hierarchical Process Modeling and Monitoring
Complex industrial processes may be formulated with hybrid correlations, indicating that linear and nonlinear relationships simultaneously exist among process variables, which brings great challenges for process monitoring. However, previous work did not consider the hybrid correlations and treated...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial electronics (1982) 2018-03, Vol.65 (3), p.2683-2692 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2692 |
---|---|
container_issue | 3 |
container_start_page | 2683 |
container_title | IEEE transactions on industrial electronics (1982) |
container_volume | 65 |
creator | Li, Wenqing Zhao, Chunhui Gao, Furong |
description | Complex industrial processes may be formulated with hybrid correlations, indicating that linear and nonlinear relationships simultaneously exist among process variables, which brings great challenges for process monitoring. However, previous work did not consider the hybrid correlations and treated all the variables as a single subject in which single linear or nonlinear analysis method was employed based on prior process knowledge or some evaluation results, which may degrade the model accuracy and monitoring performance. Therefore, for complex processes with hybrid correlations, this paper proposes a linearity evaluation and variable subset partition based hierarchical modeling and monitoring method. First, linear variable subsets are separated from nonlinear subsets through an iterative variable correlation evaluation procedure. Second, hierarchical models are developed to capture linear patterns and nonlinear patterns in different levels. Third, a hierarchical monitoring strategy is proposed to monitor linear feature and nonlinear feature separately. By separating and modeling different types of variable correlations, the proposed method can explore more accurate process characteristics and thus improve the fault detection ability. Numerical examples and industrial applications are presented to illustrate its efficiency. |
doi_str_mv | 10.1109/TIE.2017.2745452 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1978749583</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8017442</ieee_id><sourcerecordid>1978749583</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-d330029c34f9dbce691fd9c75278fa9d858060fc83d6aab5ec930b67f992dba53</originalsourceid><addsrcrecordid>eNo9kM1LAzEQxYMoWKt3wUvA89Z8bjZHLdUWWixYvYZsktWUdVOTrdD_3vQDT8PM_N6b4QFwi9EIYyQfVrPJiCAsRkQwzjg5AwPMuSikZNU5GCAiqgIhVl6Cq5TWCGHGMR8AN_ed09H3Ozj51e1W9z50UHcWfuSprlsH37Z1cj1c6tj7w_ZJJ2fh1Luoo_nyRrdwGYNxKcFFsK713efBYRE634eY22tw0eg2uZtTHYL358lqPC3mry-z8eO8METivrCUIkSkoayRtjaulLix0gien2-0tBWvUIkaU1Fbal1zZyRFdSkaKYmtNadDcH_03cTws3WpV-uwjV0-qbAUlWCSVzRT6EiZGFKKrlGb6L913CmM1D5MlcNU-zDVKcwsuTtKvHPuH68ywhihf033cUs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1978749583</pqid></control><display><type>article</type><title>Linearity Evaluation and Variable Subset Partition Based Hierarchical Process Modeling and Monitoring</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Wenqing ; Zhao, Chunhui ; Gao, Furong</creator><creatorcontrib>Li, Wenqing ; Zhao, Chunhui ; Gao, Furong</creatorcontrib><description>Complex industrial processes may be formulated with hybrid correlations, indicating that linear and nonlinear relationships simultaneously exist among process variables, which brings great challenges for process monitoring. However, previous work did not consider the hybrid correlations and treated all the variables as a single subject in which single linear or nonlinear analysis method was employed based on prior process knowledge or some evaluation results, which may degrade the model accuracy and monitoring performance. Therefore, for complex processes with hybrid correlations, this paper proposes a linearity evaluation and variable subset partition based hierarchical modeling and monitoring method. First, linear variable subsets are separated from nonlinear subsets through an iterative variable correlation evaluation procedure. Second, hierarchical models are developed to capture linear patterns and nonlinear patterns in different levels. Third, a hierarchical monitoring strategy is proposed to monitor linear feature and nonlinear feature separately. By separating and modeling different types of variable correlations, the proposed method can explore more accurate process characteristics and thus improve the fault detection ability. Numerical examples and industrial applications are presented to illustrate its efficiency.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2017.2745452</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Correlation ; Covariance matrices ; Fault detection ; Feature extraction ; Hierarchical modeling and monitoring ; Industrial applications ; Iterative methods ; Kernel ; linear correlations and nonlinear correlations ; Linearity ; Mathematical models ; Model accuracy ; Monitoring ; Nonlinear analysis ; Partitions ; Principal component analysis ; process monitoring ; Process variables ; variable separation</subject><ispartof>IEEE transactions on industrial electronics (1982), 2018-03, Vol.65 (3), p.2683-2692</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-d330029c34f9dbce691fd9c75278fa9d858060fc83d6aab5ec930b67f992dba53</citedby><cites>FETCH-LOGICAL-c291t-d330029c34f9dbce691fd9c75278fa9d858060fc83d6aab5ec930b67f992dba53</cites><orcidid>0000-0001-5612-9899 ; 0000-0002-0254-5763</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8017442$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8017442$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Wenqing</creatorcontrib><creatorcontrib>Zhao, Chunhui</creatorcontrib><creatorcontrib>Gao, Furong</creatorcontrib><title>Linearity Evaluation and Variable Subset Partition Based Hierarchical Process Modeling and Monitoring</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>Complex industrial processes may be formulated with hybrid correlations, indicating that linear and nonlinear relationships simultaneously exist among process variables, which brings great challenges for process monitoring. However, previous work did not consider the hybrid correlations and treated all the variables as a single subject in which single linear or nonlinear analysis method was employed based on prior process knowledge or some evaluation results, which may degrade the model accuracy and monitoring performance. Therefore, for complex processes with hybrid correlations, this paper proposes a linearity evaluation and variable subset partition based hierarchical modeling and monitoring method. First, linear variable subsets are separated from nonlinear subsets through an iterative variable correlation evaluation procedure. Second, hierarchical models are developed to capture linear patterns and nonlinear patterns in different levels. Third, a hierarchical monitoring strategy is proposed to monitor linear feature and nonlinear feature separately. By separating and modeling different types of variable correlations, the proposed method can explore more accurate process characteristics and thus improve the fault detection ability. Numerical examples and industrial applications are presented to illustrate its efficiency.</description><subject>Correlation</subject><subject>Covariance matrices</subject><subject>Fault detection</subject><subject>Feature extraction</subject><subject>Hierarchical modeling and monitoring</subject><subject>Industrial applications</subject><subject>Iterative methods</subject><subject>Kernel</subject><subject>linear correlations and nonlinear correlations</subject><subject>Linearity</subject><subject>Mathematical models</subject><subject>Model accuracy</subject><subject>Monitoring</subject><subject>Nonlinear analysis</subject><subject>Partitions</subject><subject>Principal component analysis</subject><subject>process monitoring</subject><subject>Process variables</subject><subject>variable separation</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1LAzEQxYMoWKt3wUvA89Z8bjZHLdUWWixYvYZsktWUdVOTrdD_3vQDT8PM_N6b4QFwi9EIYyQfVrPJiCAsRkQwzjg5AwPMuSikZNU5GCAiqgIhVl6Cq5TWCGHGMR8AN_ed09H3Ozj51e1W9z50UHcWfuSprlsH37Z1cj1c6tj7w_ZJJ2fh1Luoo_nyRrdwGYNxKcFFsK713efBYRE634eY22tw0eg2uZtTHYL358lqPC3mry-z8eO8METivrCUIkSkoayRtjaulLix0gien2-0tBWvUIkaU1Fbal1zZyRFdSkaKYmtNadDcH_03cTws3WpV-uwjV0-qbAUlWCSVzRT6EiZGFKKrlGb6L913CmM1D5MlcNU-zDVKcwsuTtKvHPuH68ywhihf033cUs</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Li, Wenqing</creator><creator>Zhao, Chunhui</creator><creator>Gao, Furong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5612-9899</orcidid><orcidid>https://orcid.org/0000-0002-0254-5763</orcidid></search><sort><creationdate>20180301</creationdate><title>Linearity Evaluation and Variable Subset Partition Based Hierarchical Process Modeling and Monitoring</title><author>Li, Wenqing ; Zhao, Chunhui ; Gao, Furong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-d330029c34f9dbce691fd9c75278fa9d858060fc83d6aab5ec930b67f992dba53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Correlation</topic><topic>Covariance matrices</topic><topic>Fault detection</topic><topic>Feature extraction</topic><topic>Hierarchical modeling and monitoring</topic><topic>Industrial applications</topic><topic>Iterative methods</topic><topic>Kernel</topic><topic>linear correlations and nonlinear correlations</topic><topic>Linearity</topic><topic>Mathematical models</topic><topic>Model accuracy</topic><topic>Monitoring</topic><topic>Nonlinear analysis</topic><topic>Partitions</topic><topic>Principal component analysis</topic><topic>process monitoring</topic><topic>Process variables</topic><topic>variable separation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Wenqing</creatorcontrib><creatorcontrib>Zhao, Chunhui</creatorcontrib><creatorcontrib>Gao, Furong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Wenqing</au><au>Zhao, Chunhui</au><au>Gao, Furong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linearity Evaluation and Variable Subset Partition Based Hierarchical Process Modeling and Monitoring</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2018-03-01</date><risdate>2018</risdate><volume>65</volume><issue>3</issue><spage>2683</spage><epage>2692</epage><pages>2683-2692</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>Complex industrial processes may be formulated with hybrid correlations, indicating that linear and nonlinear relationships simultaneously exist among process variables, which brings great challenges for process monitoring. However, previous work did not consider the hybrid correlations and treated all the variables as a single subject in which single linear or nonlinear analysis method was employed based on prior process knowledge or some evaluation results, which may degrade the model accuracy and monitoring performance. Therefore, for complex processes with hybrid correlations, this paper proposes a linearity evaluation and variable subset partition based hierarchical modeling and monitoring method. First, linear variable subsets are separated from nonlinear subsets through an iterative variable correlation evaluation procedure. Second, hierarchical models are developed to capture linear patterns and nonlinear patterns in different levels. Third, a hierarchical monitoring strategy is proposed to monitor linear feature and nonlinear feature separately. By separating and modeling different types of variable correlations, the proposed method can explore more accurate process characteristics and thus improve the fault detection ability. Numerical examples and industrial applications are presented to illustrate its efficiency.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2017.2745452</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5612-9899</orcidid><orcidid>https://orcid.org/0000-0002-0254-5763</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0278-0046 |
ispartof | IEEE transactions on industrial electronics (1982), 2018-03, Vol.65 (3), p.2683-2692 |
issn | 0278-0046 1557-9948 |
language | eng |
recordid | cdi_proquest_journals_1978749583 |
source | IEEE Electronic Library (IEL) |
subjects | Correlation Covariance matrices Fault detection Feature extraction Hierarchical modeling and monitoring Industrial applications Iterative methods Kernel linear correlations and nonlinear correlations Linearity Mathematical models Model accuracy Monitoring Nonlinear analysis Partitions Principal component analysis process monitoring Process variables variable separation |
title | Linearity Evaluation and Variable Subset Partition Based Hierarchical Process Modeling and Monitoring |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T22%3A09%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linearity%20Evaluation%20and%20Variable%20Subset%20Partition%20Based%20Hierarchical%20Process%20Modeling%20and%20Monitoring&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Li,%20Wenqing&rft.date=2018-03-01&rft.volume=65&rft.issue=3&rft.spage=2683&rft.epage=2692&rft.pages=2683-2692&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2017.2745452&rft_dat=%3Cproquest_RIE%3E1978749583%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1978749583&rft_id=info:pmid/&rft_ieee_id=8017442&rfr_iscdi=true |