Growth of Ni3Se2 nanosheets on Ni foam for asymmetric supercapacitors

We present a facile one-step hydrothermal method to in situ grow nickel selenide (Ni 3 Se 2 ) nanosheets on nickel (Ni) foam (Ni 3 Se 2 /Ni) by using SeO 2 as selenide source, Ni foam as nickel source and NaBH 4 as reducing agent. The mole ratio of NaBH 4 /SeO 2 is optimized as 4:1. An asymmetric su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science. Materials in electronics 2018-03, Vol.29 (6), p.4649-4657
Hauptverfasser: Jiang, Si, Wu, Jihuai, Ye, Beirong, Fan, Yueyue, Ge, Jinhua, Guo, Qiyao, Huang, Miaoliang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4657
container_issue 6
container_start_page 4649
container_title Journal of materials science. Materials in electronics
container_volume 29
creator Jiang, Si
Wu, Jihuai
Ye, Beirong
Fan, Yueyue
Ge, Jinhua
Guo, Qiyao
Huang, Miaoliang
description We present a facile one-step hydrothermal method to in situ grow nickel selenide (Ni 3 Se 2 ) nanosheets on nickel (Ni) foam (Ni 3 Se 2 /Ni) by using SeO 2 as selenide source, Ni foam as nickel source and NaBH 4 as reducing agent. The mole ratio of NaBH 4 /SeO 2 is optimized as 4:1. An asymmetric supercapacitor (ASC) is fabricated by using as synthesized Ni 3 Se 2 /Ni as positive electrode and activated carbon (AC) as negative electrode. The synthesized materials and assembled devices are measured and characterized by a field emission scanning electron microscopy, powder X-ray diffraction, cyclic voltammetry, galvanostatic charge–discharge, and electrochemical impedance spectroscopy. The results shows that the as-synthesized Ni 3 Se 2 /Ni electrode possesses a high specific capacitance of 854 F g −1 at 1 A g −1 . The ASC can steadily operate with a high voltage of 1.6 V in 3 M KOH electrolytes, and possesses a superior energy density of 23.3 W h kg −1 at a power density of 398.1 W kg −1 . In addition, the Ni 3 Se 2 //AC ASC shows excellent charge/discharge stability, after 5000 cycles the capacitance retention reaches 91.11%. The excellent performance of Ni 3 Se 2 /Ni electrode is mainly due to the pseudo-capacitive by Ni 3 Se 2 and the 3D structure of Ni foam.
doi_str_mv 10.1007/s10854-017-8416-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1978527997</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1978527997</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-a7f6a157ebca8e64f9dca1e48baa88bb69c33fc752c8bd0333703a8141148403</originalsourceid><addsrcrecordid>eNp1kDFPwzAQhS0EEqXwA9gsMRt8thM7I6pKi1TBQAc2y3FtmorEwU6F8u9xFQYWljvp9N67pw-hW6D3QKl8SEBVIQgFSZSAkoxnaAaF5EQo9n6OZrQqJBEFY5foKqUDpbQUXM3QchXD97DHweOXhr85hjvThbR3bkg4dPmIfTBtHhGbNLatG2JjcTr2LlrTG9sMIaZrdOHNZ3I3v3uOtk_L7WJNNq-r58XjhljBYCBG-tLkVq62RrlS-GpnDTihamOUquuyspx7KwtmVb2jnHNJuVEgAIQSlM_R3RTbx_B1dGnQh3CMXf6ooZKqYLKqZFbBpLIxpBSd131sWhNHDVSfYOkJls6w9AmWHrOHTZ6Utd2Hi3-S_zX9AEk8bOk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1978527997</pqid></control><display><type>article</type><title>Growth of Ni3Se2 nanosheets on Ni foam for asymmetric supercapacitors</title><source>SpringerNature Journals</source><creator>Jiang, Si ; Wu, Jihuai ; Ye, Beirong ; Fan, Yueyue ; Ge, Jinhua ; Guo, Qiyao ; Huang, Miaoliang</creator><creatorcontrib>Jiang, Si ; Wu, Jihuai ; Ye, Beirong ; Fan, Yueyue ; Ge, Jinhua ; Guo, Qiyao ; Huang, Miaoliang</creatorcontrib><description>We present a facile one-step hydrothermal method to in situ grow nickel selenide (Ni 3 Se 2 ) nanosheets on nickel (Ni) foam (Ni 3 Se 2 /Ni) by using SeO 2 as selenide source, Ni foam as nickel source and NaBH 4 as reducing agent. The mole ratio of NaBH 4 /SeO 2 is optimized as 4:1. An asymmetric supercapacitor (ASC) is fabricated by using as synthesized Ni 3 Se 2 /Ni as positive electrode and activated carbon (AC) as negative electrode. The synthesized materials and assembled devices are measured and characterized by a field emission scanning electron microscopy, powder X-ray diffraction, cyclic voltammetry, galvanostatic charge–discharge, and electrochemical impedance spectroscopy. The results shows that the as-synthesized Ni 3 Se 2 /Ni electrode possesses a high specific capacitance of 854 F g −1 at 1 A g −1 . The ASC can steadily operate with a high voltage of 1.6 V in 3 M KOH electrolytes, and possesses a superior energy density of 23.3 W h kg −1 at a power density of 398.1 W kg −1 . In addition, the Ni 3 Se 2 //AC ASC shows excellent charge/discharge stability, after 5000 cycles the capacitance retention reaches 91.11%. The excellent performance of Ni 3 Se 2 /Ni electrode is mainly due to the pseudo-capacitive by Ni 3 Se 2 and the 3D structure of Ni foam.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-017-8416-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Activated carbon ; Capacitance ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Discharge ; Electrochemical impedance spectroscopy ; Electrodes ; Electron microscopy ; Field emission microscopy ; Flux density ; Materials Science ; Metal foams ; Nanosheets ; Nickel ; Optical and Electronic Materials ; Scanning electron microscopy ; Selenium dioxide ; Supercapacitors ; Synthesis ; X ray powder diffraction</subject><ispartof>Journal of materials science. Materials in electronics, 2018-03, Vol.29 (6), p.4649-4657</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2017</rights><rights>Journal of Materials Science: Materials in Electronics is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-a7f6a157ebca8e64f9dca1e48baa88bb69c33fc752c8bd0333703a8141148403</citedby><cites>FETCH-LOGICAL-c421t-a7f6a157ebca8e64f9dca1e48baa88bb69c33fc752c8bd0333703a8141148403</cites><orcidid>0000-0002-9820-1382</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-017-8416-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-017-8416-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27928,27929,41492,42561,51323</link.rule.ids></links><search><creatorcontrib>Jiang, Si</creatorcontrib><creatorcontrib>Wu, Jihuai</creatorcontrib><creatorcontrib>Ye, Beirong</creatorcontrib><creatorcontrib>Fan, Yueyue</creatorcontrib><creatorcontrib>Ge, Jinhua</creatorcontrib><creatorcontrib>Guo, Qiyao</creatorcontrib><creatorcontrib>Huang, Miaoliang</creatorcontrib><title>Growth of Ni3Se2 nanosheets on Ni foam for asymmetric supercapacitors</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>We present a facile one-step hydrothermal method to in situ grow nickel selenide (Ni 3 Se 2 ) nanosheets on nickel (Ni) foam (Ni 3 Se 2 /Ni) by using SeO 2 as selenide source, Ni foam as nickel source and NaBH 4 as reducing agent. The mole ratio of NaBH 4 /SeO 2 is optimized as 4:1. An asymmetric supercapacitor (ASC) is fabricated by using as synthesized Ni 3 Se 2 /Ni as positive electrode and activated carbon (AC) as negative electrode. The synthesized materials and assembled devices are measured and characterized by a field emission scanning electron microscopy, powder X-ray diffraction, cyclic voltammetry, galvanostatic charge–discharge, and electrochemical impedance spectroscopy. The results shows that the as-synthesized Ni 3 Se 2 /Ni electrode possesses a high specific capacitance of 854 F g −1 at 1 A g −1 . The ASC can steadily operate with a high voltage of 1.6 V in 3 M KOH electrolytes, and possesses a superior energy density of 23.3 W h kg −1 at a power density of 398.1 W kg −1 . In addition, the Ni 3 Se 2 //AC ASC shows excellent charge/discharge stability, after 5000 cycles the capacitance retention reaches 91.11%. The excellent performance of Ni 3 Se 2 /Ni electrode is mainly due to the pseudo-capacitive by Ni 3 Se 2 and the 3D structure of Ni foam.</description><subject>Activated carbon</subject><subject>Capacitance</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Discharge</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Electrodes</subject><subject>Electron microscopy</subject><subject>Field emission microscopy</subject><subject>Flux density</subject><subject>Materials Science</subject><subject>Metal foams</subject><subject>Nanosheets</subject><subject>Nickel</subject><subject>Optical and Electronic Materials</subject><subject>Scanning electron microscopy</subject><subject>Selenium dioxide</subject><subject>Supercapacitors</subject><subject>Synthesis</subject><subject>X ray powder diffraction</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kDFPwzAQhS0EEqXwA9gsMRt8thM7I6pKi1TBQAc2y3FtmorEwU6F8u9xFQYWljvp9N67pw-hW6D3QKl8SEBVIQgFSZSAkoxnaAaF5EQo9n6OZrQqJBEFY5foKqUDpbQUXM3QchXD97DHweOXhr85hjvThbR3bkg4dPmIfTBtHhGbNLatG2JjcTr2LlrTG9sMIaZrdOHNZ3I3v3uOtk_L7WJNNq-r58XjhljBYCBG-tLkVq62RrlS-GpnDTihamOUquuyspx7KwtmVb2jnHNJuVEgAIQSlM_R3RTbx_B1dGnQh3CMXf6ooZKqYLKqZFbBpLIxpBSd131sWhNHDVSfYOkJls6w9AmWHrOHTZ6Utd2Hi3-S_zX9AEk8bOk</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Jiang, Si</creator><creator>Wu, Jihuai</creator><creator>Ye, Beirong</creator><creator>Fan, Yueyue</creator><creator>Ge, Jinhua</creator><creator>Guo, Qiyao</creator><creator>Huang, Miaoliang</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-9820-1382</orcidid></search><sort><creationdate>20180301</creationdate><title>Growth of Ni3Se2 nanosheets on Ni foam for asymmetric supercapacitors</title><author>Jiang, Si ; Wu, Jihuai ; Ye, Beirong ; Fan, Yueyue ; Ge, Jinhua ; Guo, Qiyao ; Huang, Miaoliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-a7f6a157ebca8e64f9dca1e48baa88bb69c33fc752c8bd0333703a8141148403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Activated carbon</topic><topic>Capacitance</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Discharge</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Electrodes</topic><topic>Electron microscopy</topic><topic>Field emission microscopy</topic><topic>Flux density</topic><topic>Materials Science</topic><topic>Metal foams</topic><topic>Nanosheets</topic><topic>Nickel</topic><topic>Optical and Electronic Materials</topic><topic>Scanning electron microscopy</topic><topic>Selenium dioxide</topic><topic>Supercapacitors</topic><topic>Synthesis</topic><topic>X ray powder diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Si</creatorcontrib><creatorcontrib>Wu, Jihuai</creatorcontrib><creatorcontrib>Ye, Beirong</creatorcontrib><creatorcontrib>Fan, Yueyue</creatorcontrib><creatorcontrib>Ge, Jinhua</creatorcontrib><creatorcontrib>Guo, Qiyao</creatorcontrib><creatorcontrib>Huang, Miaoliang</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Si</au><au>Wu, Jihuai</au><au>Ye, Beirong</au><au>Fan, Yueyue</au><au>Ge, Jinhua</au><au>Guo, Qiyao</au><au>Huang, Miaoliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Growth of Ni3Se2 nanosheets on Ni foam for asymmetric supercapacitors</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2018-03-01</date><risdate>2018</risdate><volume>29</volume><issue>6</issue><spage>4649</spage><epage>4657</epage><pages>4649-4657</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>We present a facile one-step hydrothermal method to in situ grow nickel selenide (Ni 3 Se 2 ) nanosheets on nickel (Ni) foam (Ni 3 Se 2 /Ni) by using SeO 2 as selenide source, Ni foam as nickel source and NaBH 4 as reducing agent. The mole ratio of NaBH 4 /SeO 2 is optimized as 4:1. An asymmetric supercapacitor (ASC) is fabricated by using as synthesized Ni 3 Se 2 /Ni as positive electrode and activated carbon (AC) as negative electrode. The synthesized materials and assembled devices are measured and characterized by a field emission scanning electron microscopy, powder X-ray diffraction, cyclic voltammetry, galvanostatic charge–discharge, and electrochemical impedance spectroscopy. The results shows that the as-synthesized Ni 3 Se 2 /Ni electrode possesses a high specific capacitance of 854 F g −1 at 1 A g −1 . The ASC can steadily operate with a high voltage of 1.6 V in 3 M KOH electrolytes, and possesses a superior energy density of 23.3 W h kg −1 at a power density of 398.1 W kg −1 . In addition, the Ni 3 Se 2 //AC ASC shows excellent charge/discharge stability, after 5000 cycles the capacitance retention reaches 91.11%. The excellent performance of Ni 3 Se 2 /Ni electrode is mainly due to the pseudo-capacitive by Ni 3 Se 2 and the 3D structure of Ni foam.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-017-8416-y</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9820-1382</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-4522
ispartof Journal of materials science. Materials in electronics, 2018-03, Vol.29 (6), p.4649-4657
issn 0957-4522
1573-482X
language eng
recordid cdi_proquest_journals_1978527997
source SpringerNature Journals
subjects Activated carbon
Capacitance
Characterization and Evaluation of Materials
Chemistry and Materials Science
Discharge
Electrochemical impedance spectroscopy
Electrodes
Electron microscopy
Field emission microscopy
Flux density
Materials Science
Metal foams
Nanosheets
Nickel
Optical and Electronic Materials
Scanning electron microscopy
Selenium dioxide
Supercapacitors
Synthesis
X ray powder diffraction
title Growth of Ni3Se2 nanosheets on Ni foam for asymmetric supercapacitors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T10%3A59%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Growth%20of%20Ni3Se2%20nanosheets%20on%20Ni%20foam%20for%20asymmetric%20supercapacitors&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Jiang,%20Si&rft.date=2018-03-01&rft.volume=29&rft.issue=6&rft.spage=4649&rft.epage=4657&rft.pages=4649-4657&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-017-8416-y&rft_dat=%3Cproquest_cross%3E1978527997%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1978527997&rft_id=info:pmid/&rfr_iscdi=true