Growth of Ni3Se2 nanosheets on Ni foam for asymmetric supercapacitors
We present a facile one-step hydrothermal method to in situ grow nickel selenide (Ni 3 Se 2 ) nanosheets on nickel (Ni) foam (Ni 3 Se 2 /Ni) by using SeO 2 as selenide source, Ni foam as nickel source and NaBH 4 as reducing agent. The mole ratio of NaBH 4 /SeO 2 is optimized as 4:1. An asymmetric su...
Gespeichert in:
Veröffentlicht in: | Journal of materials science. Materials in electronics 2018-03, Vol.29 (6), p.4649-4657 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4657 |
---|---|
container_issue | 6 |
container_start_page | 4649 |
container_title | Journal of materials science. Materials in electronics |
container_volume | 29 |
creator | Jiang, Si Wu, Jihuai Ye, Beirong Fan, Yueyue Ge, Jinhua Guo, Qiyao Huang, Miaoliang |
description | We present a facile one-step hydrothermal method to in situ grow nickel selenide (Ni
3
Se
2
) nanosheets on nickel (Ni) foam (Ni
3
Se
2
/Ni) by using SeO
2
as selenide source, Ni foam as nickel source and NaBH
4
as reducing agent. The mole ratio of NaBH
4
/SeO
2
is optimized as 4:1. An asymmetric supercapacitor (ASC) is fabricated by using as synthesized Ni
3
Se
2
/Ni as positive electrode and activated carbon (AC) as negative electrode. The synthesized materials and assembled devices are measured and characterized by a field emission scanning electron microscopy, powder X-ray diffraction, cyclic voltammetry, galvanostatic charge–discharge, and electrochemical impedance spectroscopy. The results shows that the as-synthesized Ni
3
Se
2
/Ni electrode possesses a high specific capacitance of 854 F g
−1
at 1 A g
−1
. The ASC can steadily operate with a high voltage of 1.6 V in 3 M KOH electrolytes, and possesses a superior energy density of 23.3 W h kg
−1
at a power density of 398.1 W kg
−1
. In addition, the Ni
3
Se
2
//AC ASC shows excellent charge/discharge stability, after 5000 cycles the capacitance retention reaches 91.11%. The excellent performance of Ni
3
Se
2
/Ni electrode is mainly due to the pseudo-capacitive by Ni
3
Se
2
and the 3D structure of Ni foam. |
doi_str_mv | 10.1007/s10854-017-8416-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1978527997</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1978527997</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-a7f6a157ebca8e64f9dca1e48baa88bb69c33fc752c8bd0333703a8141148403</originalsourceid><addsrcrecordid>eNp1kDFPwzAQhS0EEqXwA9gsMRt8thM7I6pKi1TBQAc2y3FtmorEwU6F8u9xFQYWljvp9N67pw-hW6D3QKl8SEBVIQgFSZSAkoxnaAaF5EQo9n6OZrQqJBEFY5foKqUDpbQUXM3QchXD97DHweOXhr85hjvThbR3bkg4dPmIfTBtHhGbNLatG2JjcTr2LlrTG9sMIaZrdOHNZ3I3v3uOtk_L7WJNNq-r58XjhljBYCBG-tLkVq62RrlS-GpnDTihamOUquuyspx7KwtmVb2jnHNJuVEgAIQSlM_R3RTbx_B1dGnQh3CMXf6ooZKqYLKqZFbBpLIxpBSd131sWhNHDVSfYOkJls6w9AmWHrOHTZ6Utd2Hi3-S_zX9AEk8bOk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1978527997</pqid></control><display><type>article</type><title>Growth of Ni3Se2 nanosheets on Ni foam for asymmetric supercapacitors</title><source>SpringerNature Journals</source><creator>Jiang, Si ; Wu, Jihuai ; Ye, Beirong ; Fan, Yueyue ; Ge, Jinhua ; Guo, Qiyao ; Huang, Miaoliang</creator><creatorcontrib>Jiang, Si ; Wu, Jihuai ; Ye, Beirong ; Fan, Yueyue ; Ge, Jinhua ; Guo, Qiyao ; Huang, Miaoliang</creatorcontrib><description>We present a facile one-step hydrothermal method to in situ grow nickel selenide (Ni
3
Se
2
) nanosheets on nickel (Ni) foam (Ni
3
Se
2
/Ni) by using SeO
2
as selenide source, Ni foam as nickel source and NaBH
4
as reducing agent. The mole ratio of NaBH
4
/SeO
2
is optimized as 4:1. An asymmetric supercapacitor (ASC) is fabricated by using as synthesized Ni
3
Se
2
/Ni as positive electrode and activated carbon (AC) as negative electrode. The synthesized materials and assembled devices are measured and characterized by a field emission scanning electron microscopy, powder X-ray diffraction, cyclic voltammetry, galvanostatic charge–discharge, and electrochemical impedance spectroscopy. The results shows that the as-synthesized Ni
3
Se
2
/Ni electrode possesses a high specific capacitance of 854 F g
−1
at 1 A g
−1
. The ASC can steadily operate with a high voltage of 1.6 V in 3 M KOH electrolytes, and possesses a superior energy density of 23.3 W h kg
−1
at a power density of 398.1 W kg
−1
. In addition, the Ni
3
Se
2
//AC ASC shows excellent charge/discharge stability, after 5000 cycles the capacitance retention reaches 91.11%. The excellent performance of Ni
3
Se
2
/Ni electrode is mainly due to the pseudo-capacitive by Ni
3
Se
2
and the 3D structure of Ni foam.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-017-8416-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Activated carbon ; Capacitance ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Discharge ; Electrochemical impedance spectroscopy ; Electrodes ; Electron microscopy ; Field emission microscopy ; Flux density ; Materials Science ; Metal foams ; Nanosheets ; Nickel ; Optical and Electronic Materials ; Scanning electron microscopy ; Selenium dioxide ; Supercapacitors ; Synthesis ; X ray powder diffraction</subject><ispartof>Journal of materials science. Materials in electronics, 2018-03, Vol.29 (6), p.4649-4657</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2017</rights><rights>Journal of Materials Science: Materials in Electronics is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-a7f6a157ebca8e64f9dca1e48baa88bb69c33fc752c8bd0333703a8141148403</citedby><cites>FETCH-LOGICAL-c421t-a7f6a157ebca8e64f9dca1e48baa88bb69c33fc752c8bd0333703a8141148403</cites><orcidid>0000-0002-9820-1382</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-017-8416-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-017-8416-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27928,27929,41492,42561,51323</link.rule.ids></links><search><creatorcontrib>Jiang, Si</creatorcontrib><creatorcontrib>Wu, Jihuai</creatorcontrib><creatorcontrib>Ye, Beirong</creatorcontrib><creatorcontrib>Fan, Yueyue</creatorcontrib><creatorcontrib>Ge, Jinhua</creatorcontrib><creatorcontrib>Guo, Qiyao</creatorcontrib><creatorcontrib>Huang, Miaoliang</creatorcontrib><title>Growth of Ni3Se2 nanosheets on Ni foam for asymmetric supercapacitors</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>We present a facile one-step hydrothermal method to in situ grow nickel selenide (Ni
3
Se
2
) nanosheets on nickel (Ni) foam (Ni
3
Se
2
/Ni) by using SeO
2
as selenide source, Ni foam as nickel source and NaBH
4
as reducing agent. The mole ratio of NaBH
4
/SeO
2
is optimized as 4:1. An asymmetric supercapacitor (ASC) is fabricated by using as synthesized Ni
3
Se
2
/Ni as positive electrode and activated carbon (AC) as negative electrode. The synthesized materials and assembled devices are measured and characterized by a field emission scanning electron microscopy, powder X-ray diffraction, cyclic voltammetry, galvanostatic charge–discharge, and electrochemical impedance spectroscopy. The results shows that the as-synthesized Ni
3
Se
2
/Ni electrode possesses a high specific capacitance of 854 F g
−1
at 1 A g
−1
. The ASC can steadily operate with a high voltage of 1.6 V in 3 M KOH electrolytes, and possesses a superior energy density of 23.3 W h kg
−1
at a power density of 398.1 W kg
−1
. In addition, the Ni
3
Se
2
//AC ASC shows excellent charge/discharge stability, after 5000 cycles the capacitance retention reaches 91.11%. The excellent performance of Ni
3
Se
2
/Ni electrode is mainly due to the pseudo-capacitive by Ni
3
Se
2
and the 3D structure of Ni foam.</description><subject>Activated carbon</subject><subject>Capacitance</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Discharge</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Electrodes</subject><subject>Electron microscopy</subject><subject>Field emission microscopy</subject><subject>Flux density</subject><subject>Materials Science</subject><subject>Metal foams</subject><subject>Nanosheets</subject><subject>Nickel</subject><subject>Optical and Electronic Materials</subject><subject>Scanning electron microscopy</subject><subject>Selenium dioxide</subject><subject>Supercapacitors</subject><subject>Synthesis</subject><subject>X ray powder diffraction</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kDFPwzAQhS0EEqXwA9gsMRt8thM7I6pKi1TBQAc2y3FtmorEwU6F8u9xFQYWljvp9N67pw-hW6D3QKl8SEBVIQgFSZSAkoxnaAaF5EQo9n6OZrQqJBEFY5foKqUDpbQUXM3QchXD97DHweOXhr85hjvThbR3bkg4dPmIfTBtHhGbNLatG2JjcTr2LlrTG9sMIaZrdOHNZ3I3v3uOtk_L7WJNNq-r58XjhljBYCBG-tLkVq62RrlS-GpnDTihamOUquuyspx7KwtmVb2jnHNJuVEgAIQSlM_R3RTbx_B1dGnQh3CMXf6ooZKqYLKqZFbBpLIxpBSd131sWhNHDVSfYOkJls6w9AmWHrOHTZ6Utd2Hi3-S_zX9AEk8bOk</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Jiang, Si</creator><creator>Wu, Jihuai</creator><creator>Ye, Beirong</creator><creator>Fan, Yueyue</creator><creator>Ge, Jinhua</creator><creator>Guo, Qiyao</creator><creator>Huang, Miaoliang</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-9820-1382</orcidid></search><sort><creationdate>20180301</creationdate><title>Growth of Ni3Se2 nanosheets on Ni foam for asymmetric supercapacitors</title><author>Jiang, Si ; Wu, Jihuai ; Ye, Beirong ; Fan, Yueyue ; Ge, Jinhua ; Guo, Qiyao ; Huang, Miaoliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-a7f6a157ebca8e64f9dca1e48baa88bb69c33fc752c8bd0333703a8141148403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Activated carbon</topic><topic>Capacitance</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Discharge</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Electrodes</topic><topic>Electron microscopy</topic><topic>Field emission microscopy</topic><topic>Flux density</topic><topic>Materials Science</topic><topic>Metal foams</topic><topic>Nanosheets</topic><topic>Nickel</topic><topic>Optical and Electronic Materials</topic><topic>Scanning electron microscopy</topic><topic>Selenium dioxide</topic><topic>Supercapacitors</topic><topic>Synthesis</topic><topic>X ray powder diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Si</creatorcontrib><creatorcontrib>Wu, Jihuai</creatorcontrib><creatorcontrib>Ye, Beirong</creatorcontrib><creatorcontrib>Fan, Yueyue</creatorcontrib><creatorcontrib>Ge, Jinhua</creatorcontrib><creatorcontrib>Guo, Qiyao</creatorcontrib><creatorcontrib>Huang, Miaoliang</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Si</au><au>Wu, Jihuai</au><au>Ye, Beirong</au><au>Fan, Yueyue</au><au>Ge, Jinhua</au><au>Guo, Qiyao</au><au>Huang, Miaoliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Growth of Ni3Se2 nanosheets on Ni foam for asymmetric supercapacitors</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2018-03-01</date><risdate>2018</risdate><volume>29</volume><issue>6</issue><spage>4649</spage><epage>4657</epage><pages>4649-4657</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>We present a facile one-step hydrothermal method to in situ grow nickel selenide (Ni
3
Se
2
) nanosheets on nickel (Ni) foam (Ni
3
Se
2
/Ni) by using SeO
2
as selenide source, Ni foam as nickel source and NaBH
4
as reducing agent. The mole ratio of NaBH
4
/SeO
2
is optimized as 4:1. An asymmetric supercapacitor (ASC) is fabricated by using as synthesized Ni
3
Se
2
/Ni as positive electrode and activated carbon (AC) as negative electrode. The synthesized materials and assembled devices are measured and characterized by a field emission scanning electron microscopy, powder X-ray diffraction, cyclic voltammetry, galvanostatic charge–discharge, and electrochemical impedance spectroscopy. The results shows that the as-synthesized Ni
3
Se
2
/Ni electrode possesses a high specific capacitance of 854 F g
−1
at 1 A g
−1
. The ASC can steadily operate with a high voltage of 1.6 V in 3 M KOH electrolytes, and possesses a superior energy density of 23.3 W h kg
−1
at a power density of 398.1 W kg
−1
. In addition, the Ni
3
Se
2
//AC ASC shows excellent charge/discharge stability, after 5000 cycles the capacitance retention reaches 91.11%. The excellent performance of Ni
3
Se
2
/Ni electrode is mainly due to the pseudo-capacitive by Ni
3
Se
2
and the 3D structure of Ni foam.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-017-8416-y</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9820-1382</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4522 |
ispartof | Journal of materials science. Materials in electronics, 2018-03, Vol.29 (6), p.4649-4657 |
issn | 0957-4522 1573-482X |
language | eng |
recordid | cdi_proquest_journals_1978527997 |
source | SpringerNature Journals |
subjects | Activated carbon Capacitance Characterization and Evaluation of Materials Chemistry and Materials Science Discharge Electrochemical impedance spectroscopy Electrodes Electron microscopy Field emission microscopy Flux density Materials Science Metal foams Nanosheets Nickel Optical and Electronic Materials Scanning electron microscopy Selenium dioxide Supercapacitors Synthesis X ray powder diffraction |
title | Growth of Ni3Se2 nanosheets on Ni foam for asymmetric supercapacitors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T10%3A59%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Growth%20of%20Ni3Se2%20nanosheets%20on%20Ni%20foam%20for%20asymmetric%20supercapacitors&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Jiang,%20Si&rft.date=2018-03-01&rft.volume=29&rft.issue=6&rft.spage=4649&rft.epage=4657&rft.pages=4649-4657&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-017-8416-y&rft_dat=%3Cproquest_cross%3E1978527997%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1978527997&rft_id=info:pmid/&rfr_iscdi=true |