An analytical model of a typhoon wind field based on spiral trajectory

In typhoon risk assessment and warning, a critical component is a good representation of the typhoon wind field model. In this study, a new analytical model based on the logarithmic spiral trajectory model is developed to simulate the surface wind speed distribution of a typhoon. The logarithmic spi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Institution of Mechanical Engineers. Part M, Journal of engineering for the maritime environment Journal of engineering for the maritime environment, 2017-11, Vol.231 (4), p.818-827
Hauptverfasser: Niu, Haiying, Dong, Guohai, Ma, Xiaozhou, Ma, Yuxiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 827
container_issue 4
container_start_page 818
container_title Proceedings of the Institution of Mechanical Engineers. Part M, Journal of engineering for the maritime environment
container_volume 231
creator Niu, Haiying
Dong, Guohai
Ma, Xiaozhou
Ma, Yuxiang
description In typhoon risk assessment and warning, a critical component is a good representation of the typhoon wind field model. In this study, a new analytical model based on the logarithmic spiral trajectory model is developed to simulate the surface wind speed distribution of a typhoon. The logarithmic spiral trajectory model could overcome the limitation of the parametric gradient wind model. A slab surface layer of constant depth is used to solving the tangential equilibrium equation, and the frictional drag at the upper boundary of the surface layer is considered correctly. Consequently, the theoretical method for determining the Holland β parameter is derived from the logarithmic spiral trajectory model. It is concluded that β increases with the surface layer depth or decreases with the radius to maximum winds. By analyzing the change in kinetic energy of the air particle, the interpretation of the relationship between β and the influencing factors is provided. The models are applied to the 17th typhoon NESAT and the 19th typhoon NALGAE of 2011. Through comparisons between the observed wind records and the simulation results, the logarithmic spiral trajectory model proposed in this study could accurately simulate the wind speeds.
doi_str_mv 10.1177/1475090216682881
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1978441125</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1475090216682881</sage_id><sourcerecordid>1978441125</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-eca82af49ad1b245235ae39f4baa3d500f2ee6089a8998700262fe8d20f704783</originalsourceid><addsrcrecordid>eNp1kMFLwzAUxoMoOKd3jwHP1ffStEmOYzgnDLzoubw1iXZ0TU06pP-9HfMggqcH3_f7Ph4fY7cI94hKPaBUBRgQWJZaaI1nbCZAYpaDludsdrSzo3_JrlLaAaAGhTO2WnScOmrHoamp5ftgXcuD58SHsf8IoeNfTWe5b1xr-ZaSs3zSUt_EiR4i7Vw9hDheswtPbXI3P3fO3laPr8t1tnl5el4uNlmdgxkyV5MW5KUhi1shC5EX5HLj5ZYotwWAF86VoA1pY7QCEKXwTlsBXoFUOp-zu1NvH8PnwaWh2oVDnP5PFRqlpUQUxUTBiapjSCk6X_Wx2VMcK4TquFb1d60pkp0iid7dr9L_-G_zK2gi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1978441125</pqid></control><display><type>article</type><title>An analytical model of a typhoon wind field based on spiral trajectory</title><source>Access via SAGE</source><creator>Niu, Haiying ; Dong, Guohai ; Ma, Xiaozhou ; Ma, Yuxiang</creator><creatorcontrib>Niu, Haiying ; Dong, Guohai ; Ma, Xiaozhou ; Ma, Yuxiang</creatorcontrib><description>In typhoon risk assessment and warning, a critical component is a good representation of the typhoon wind field model. In this study, a new analytical model based on the logarithmic spiral trajectory model is developed to simulate the surface wind speed distribution of a typhoon. The logarithmic spiral trajectory model could overcome the limitation of the parametric gradient wind model. A slab surface layer of constant depth is used to solving the tangential equilibrium equation, and the frictional drag at the upper boundary of the surface layer is considered correctly. Consequently, the theoretical method for determining the Holland β parameter is derived from the logarithmic spiral trajectory model. It is concluded that β increases with the surface layer depth or decreases with the radius to maximum winds. By analyzing the change in kinetic energy of the air particle, the interpretation of the relationship between β and the influencing factors is provided. The models are applied to the 17th typhoon NESAT and the 19th typhoon NALGAE of 2011. Through comparisons between the observed wind records and the simulation results, the logarithmic spiral trajectory model proposed in this study could accurately simulate the wind speeds.</description><identifier>ISSN: 1475-0902</identifier><identifier>EISSN: 2041-3084</identifier><identifier>DOI: 10.1177/1475090216682881</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Computer simulation ; Equilibrium equations ; Hurricanes ; Kinetic energy ; Mathematical models ; Risk assessment ; Surface layers ; Surface wind ; Trajectory analysis ; Typhoons ; Wind speed ; Winds</subject><ispartof>Proceedings of the Institution of Mechanical Engineers. Part M, Journal of engineering for the maritime environment, 2017-11, Vol.231 (4), p.818-827</ispartof><rights>IMechE 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c309t-eca82af49ad1b245235ae39f4baa3d500f2ee6089a8998700262fe8d20f704783</citedby><cites>FETCH-LOGICAL-c309t-eca82af49ad1b245235ae39f4baa3d500f2ee6089a8998700262fe8d20f704783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/1475090216682881$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/1475090216682881$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21819,27924,27925,43621,43622</link.rule.ids></links><search><creatorcontrib>Niu, Haiying</creatorcontrib><creatorcontrib>Dong, Guohai</creatorcontrib><creatorcontrib>Ma, Xiaozhou</creatorcontrib><creatorcontrib>Ma, Yuxiang</creatorcontrib><title>An analytical model of a typhoon wind field based on spiral trajectory</title><title>Proceedings of the Institution of Mechanical Engineers. Part M, Journal of engineering for the maritime environment</title><description>In typhoon risk assessment and warning, a critical component is a good representation of the typhoon wind field model. In this study, a new analytical model based on the logarithmic spiral trajectory model is developed to simulate the surface wind speed distribution of a typhoon. The logarithmic spiral trajectory model could overcome the limitation of the parametric gradient wind model. A slab surface layer of constant depth is used to solving the tangential equilibrium equation, and the frictional drag at the upper boundary of the surface layer is considered correctly. Consequently, the theoretical method for determining the Holland β parameter is derived from the logarithmic spiral trajectory model. It is concluded that β increases with the surface layer depth or decreases with the radius to maximum winds. By analyzing the change in kinetic energy of the air particle, the interpretation of the relationship between β and the influencing factors is provided. The models are applied to the 17th typhoon NESAT and the 19th typhoon NALGAE of 2011. Through comparisons between the observed wind records and the simulation results, the logarithmic spiral trajectory model proposed in this study could accurately simulate the wind speeds.</description><subject>Computer simulation</subject><subject>Equilibrium equations</subject><subject>Hurricanes</subject><subject>Kinetic energy</subject><subject>Mathematical models</subject><subject>Risk assessment</subject><subject>Surface layers</subject><subject>Surface wind</subject><subject>Trajectory analysis</subject><subject>Typhoons</subject><subject>Wind speed</subject><subject>Winds</subject><issn>1475-0902</issn><issn>2041-3084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kMFLwzAUxoMoOKd3jwHP1ffStEmOYzgnDLzoubw1iXZ0TU06pP-9HfMggqcH3_f7Ph4fY7cI94hKPaBUBRgQWJZaaI1nbCZAYpaDludsdrSzo3_JrlLaAaAGhTO2WnScOmrHoamp5ftgXcuD58SHsf8IoeNfTWe5b1xr-ZaSs3zSUt_EiR4i7Vw9hDheswtPbXI3P3fO3laPr8t1tnl5el4uNlmdgxkyV5MW5KUhi1shC5EX5HLj5ZYotwWAF86VoA1pY7QCEKXwTlsBXoFUOp-zu1NvH8PnwaWh2oVDnP5PFRqlpUQUxUTBiapjSCk6X_Wx2VMcK4TquFb1d60pkp0iid7dr9L_-G_zK2gi</recordid><startdate>201711</startdate><enddate>201711</enddate><creator>Niu, Haiying</creator><creator>Dong, Guohai</creator><creator>Ma, Xiaozhou</creator><creator>Ma, Yuxiang</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TB</scope><scope>7TN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>F28</scope><scope>FR3</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>SOI</scope></search><sort><creationdate>201711</creationdate><title>An analytical model of a typhoon wind field based on spiral trajectory</title><author>Niu, Haiying ; Dong, Guohai ; Ma, Xiaozhou ; Ma, Yuxiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-eca82af49ad1b245235ae39f4baa3d500f2ee6089a8998700262fe8d20f704783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Computer simulation</topic><topic>Equilibrium equations</topic><topic>Hurricanes</topic><topic>Kinetic energy</topic><topic>Mathematical models</topic><topic>Risk assessment</topic><topic>Surface layers</topic><topic>Surface wind</topic><topic>Trajectory analysis</topic><topic>Typhoons</topic><topic>Wind speed</topic><topic>Winds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Niu, Haiying</creatorcontrib><creatorcontrib>Dong, Guohai</creatorcontrib><creatorcontrib>Ma, Xiaozhou</creatorcontrib><creatorcontrib>Ma, Yuxiang</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Proceedings of the Institution of Mechanical Engineers. Part M, Journal of engineering for the maritime environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Niu, Haiying</au><au>Dong, Guohai</au><au>Ma, Xiaozhou</au><au>Ma, Yuxiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An analytical model of a typhoon wind field based on spiral trajectory</atitle><jtitle>Proceedings of the Institution of Mechanical Engineers. Part M, Journal of engineering for the maritime environment</jtitle><date>2017-11</date><risdate>2017</risdate><volume>231</volume><issue>4</issue><spage>818</spage><epage>827</epage><pages>818-827</pages><issn>1475-0902</issn><eissn>2041-3084</eissn><abstract>In typhoon risk assessment and warning, a critical component is a good representation of the typhoon wind field model. In this study, a new analytical model based on the logarithmic spiral trajectory model is developed to simulate the surface wind speed distribution of a typhoon. The logarithmic spiral trajectory model could overcome the limitation of the parametric gradient wind model. A slab surface layer of constant depth is used to solving the tangential equilibrium equation, and the frictional drag at the upper boundary of the surface layer is considered correctly. Consequently, the theoretical method for determining the Holland β parameter is derived from the logarithmic spiral trajectory model. It is concluded that β increases with the surface layer depth or decreases with the radius to maximum winds. By analyzing the change in kinetic energy of the air particle, the interpretation of the relationship between β and the influencing factors is provided. The models are applied to the 17th typhoon NESAT and the 19th typhoon NALGAE of 2011. Through comparisons between the observed wind records and the simulation results, the logarithmic spiral trajectory model proposed in this study could accurately simulate the wind speeds.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/1475090216682881</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1475-0902
ispartof Proceedings of the Institution of Mechanical Engineers. Part M, Journal of engineering for the maritime environment, 2017-11, Vol.231 (4), p.818-827
issn 1475-0902
2041-3084
language eng
recordid cdi_proquest_journals_1978441125
source Access via SAGE
subjects Computer simulation
Equilibrium equations
Hurricanes
Kinetic energy
Mathematical models
Risk assessment
Surface layers
Surface wind
Trajectory analysis
Typhoons
Wind speed
Winds
title An analytical model of a typhoon wind field based on spiral trajectory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T20%3A57%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20analytical%20model%20of%20a%20typhoon%20wind%20field%20based%20on%20spiral%20trajectory&rft.jtitle=Proceedings%20of%20the%20Institution%20of%20Mechanical%20Engineers.%20Part%20M,%20Journal%20of%20engineering%20for%20the%20maritime%20environment&rft.au=Niu,%20Haiying&rft.date=2017-11&rft.volume=231&rft.issue=4&rft.spage=818&rft.epage=827&rft.pages=818-827&rft.issn=1475-0902&rft.eissn=2041-3084&rft_id=info:doi/10.1177/1475090216682881&rft_dat=%3Cproquest_cross%3E1978441125%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1978441125&rft_id=info:pmid/&rft_sage_id=10.1177_1475090216682881&rfr_iscdi=true