Kernel-based tests for joint independence
We investigate the problem of testing whether d possibly multivariate random variables, which may or may not be continuous, are jointly (or mutually) independent. Our method builds on ideas of the two-variable Hilbert–Schmidt independence criterion but allows for an arbitrary number of variables. We...
Gespeichert in:
Veröffentlicht in: | Journal of the Royal Statistical Society. Series B, Statistical methodology Statistical methodology, 2018-01, Vol.80 (1), p.5-31 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 31 |
---|---|
container_issue | 1 |
container_start_page | 5 |
container_title | Journal of the Royal Statistical Society. Series B, Statistical methodology |
container_volume | 80 |
creator | Pfister, Niklas Bühlmann, Peter Schölkopf, Bernhard Peters, Jonas |
description | We investigate the problem of testing whether d possibly multivariate random variables, which may or may not be continuous, are jointly (or mutually) independent. Our method builds on ideas of the two-variable Hilbert–Schmidt independence criterion but allows for an arbitrary number of variables. We embed the joint distribution and the product of the marginals in a reproducing kernel Hilbert space and define the d-variable Hilbert–Schmidt independence criterion dHSIC as the squared distance between the embeddings. In the population case, the value of dHSIC is 0 if and only if the d variables are jointly independent, as long as the kernel is characteristic. On the basis of an empirical estimate of dHSIC, we investigate three non-parametric hypothesis tests: a permutation test, a bootstrap analogue and a procedure based on a gamma approximation. We apply non-parametric independence testing to a problem in causal discovery and illustrate the new methods on simulated and real data sets. |
doi_str_mv | 10.1111/rssb.12235 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1978150256</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>44681792</jstor_id><sourcerecordid>44681792</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4585-cfbb92da5cb3f61e6bc5ba8e894c3cd6780d76eb3fc7dcc5269b15a7d2fea7643</originalsourceid><addsrcrecordid>eNp9kMtLw0AQxhdRsFYv3oWAJ4XU7Hv3qMUXFgSr52UfE0ioSd1Nkf73bo16dA4zA_P7ZoYPoVNczXCOq5iSm2FCKN9DE8yELLUSaj_3VOhSMkwO0VFKbZVDSDpBF08QO1iVziYIxQBpSEXdx6Ltm24omi7AGnLqPByjg9quEpz81Cl6u7t9nT-Ui-f7x_n1ovSMK1762jlNguXe0VpgEM5zZxUozTz1QUhVBSkgD70M3nMitMPcykBqsFIwOkXn49517D82-SHT9pvY5ZMGa6kwrwgXmbocKR_7lCLUZh2bdxu3BldmZ4XZWWG-rcgwHuHPZgXbf0jzslze_GrORk2bhj7-aRgTCktN6BdZDGql</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1978150256</pqid></control><display><type>article</type><title>Kernel-based tests for joint independence</title><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Business Source Complete</source><source>JSTOR Mathematics & Statistics</source><creator>Pfister, Niklas ; Bühlmann, Peter ; Schölkopf, Bernhard ; Peters, Jonas</creator><creatorcontrib>Pfister, Niklas ; Bühlmann, Peter ; Schölkopf, Bernhard ; Peters, Jonas</creatorcontrib><description>We investigate the problem of testing whether d possibly multivariate random variables, which may or may not be continuous, are jointly (or mutually) independent. Our method builds on ideas of the two-variable Hilbert–Schmidt independence criterion but allows for an arbitrary number of variables. We embed the joint distribution and the product of the marginals in a reproducing kernel Hilbert space and define the d-variable Hilbert–Schmidt independence criterion dHSIC as the squared distance between the embeddings. In the population case, the value of dHSIC is 0 if and only if the d variables are jointly independent, as long as the kernel is characteristic. On the basis of an empirical estimate of dHSIC, we investigate three non-parametric hypothesis tests: a permutation test, a bootstrap analogue and a procedure based on a gamma approximation. We apply non-parametric independence testing to a problem in causal discovery and illustrate the new methods on simulated and real data sets.</description><identifier>ISSN: 1369-7412</identifier><identifier>EISSN: 1467-9868</identifier><identifier>DOI: 10.1111/rssb.12235</identifier><language>eng</language><publisher>Oxford: John Wiley & Sons Ltd</publisher><subject>Causal inference ; Criteria ; Discovery ; Hilbert space ; Independence test ; Independent variables ; Kernel methods ; Permutations ; Random variables ; Regression analysis ; Statistical methods ; Statistics ; Variables ; V‐statistics</subject><ispartof>Journal of the Royal Statistical Society. Series B, Statistical methodology, 2018-01, Vol.80 (1), p.5-31</ispartof><rights>Copyright © 2018 The Royal Statistical Society and Blackwell Publishing Ltd.</rights><rights>2017 Royal Statistical Society</rights><rights>Copyright © 2018 The Royal Statistical Society and Blackwell Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4585-cfbb92da5cb3f61e6bc5ba8e894c3cd6780d76eb3fc7dcc5269b15a7d2fea7643</citedby><cites>FETCH-LOGICAL-c4585-cfbb92da5cb3f61e6bc5ba8e894c3cd6780d76eb3fc7dcc5269b15a7d2fea7643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/44681792$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/44681792$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,1411,27901,27902,45550,45551,57992,57996,58225,58229</link.rule.ids></links><search><creatorcontrib>Pfister, Niklas</creatorcontrib><creatorcontrib>Bühlmann, Peter</creatorcontrib><creatorcontrib>Schölkopf, Bernhard</creatorcontrib><creatorcontrib>Peters, Jonas</creatorcontrib><title>Kernel-based tests for joint independence</title><title>Journal of the Royal Statistical Society. Series B, Statistical methodology</title><description>We investigate the problem of testing whether d possibly multivariate random variables, which may or may not be continuous, are jointly (or mutually) independent. Our method builds on ideas of the two-variable Hilbert–Schmidt independence criterion but allows for an arbitrary number of variables. We embed the joint distribution and the product of the marginals in a reproducing kernel Hilbert space and define the d-variable Hilbert–Schmidt independence criterion dHSIC as the squared distance between the embeddings. In the population case, the value of dHSIC is 0 if and only if the d variables are jointly independent, as long as the kernel is characteristic. On the basis of an empirical estimate of dHSIC, we investigate three non-parametric hypothesis tests: a permutation test, a bootstrap analogue and a procedure based on a gamma approximation. We apply non-parametric independence testing to a problem in causal discovery and illustrate the new methods on simulated and real data sets.</description><subject>Causal inference</subject><subject>Criteria</subject><subject>Discovery</subject><subject>Hilbert space</subject><subject>Independence test</subject><subject>Independent variables</subject><subject>Kernel methods</subject><subject>Permutations</subject><subject>Random variables</subject><subject>Regression analysis</subject><subject>Statistical methods</subject><subject>Statistics</subject><subject>Variables</subject><subject>V‐statistics</subject><issn>1369-7412</issn><issn>1467-9868</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kMtLw0AQxhdRsFYv3oWAJ4XU7Hv3qMUXFgSr52UfE0ioSd1Nkf73bo16dA4zA_P7ZoYPoVNczXCOq5iSm2FCKN9DE8yELLUSaj_3VOhSMkwO0VFKbZVDSDpBF08QO1iVziYIxQBpSEXdx6Ltm24omi7AGnLqPByjg9quEpz81Cl6u7t9nT-Ui-f7x_n1ovSMK1762jlNguXe0VpgEM5zZxUozTz1QUhVBSkgD70M3nMitMPcykBqsFIwOkXn49517D82-SHT9pvY5ZMGa6kwrwgXmbocKR_7lCLUZh2bdxu3BldmZ4XZWWG-rcgwHuHPZgXbf0jzslze_GrORk2bhj7-aRgTCktN6BdZDGql</recordid><startdate>201801</startdate><enddate>201801</enddate><creator>Pfister, Niklas</creator><creator>Bühlmann, Peter</creator><creator>Schölkopf, Bernhard</creator><creator>Peters, Jonas</creator><general>John Wiley & Sons Ltd</general><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8BJ</scope><scope>8FD</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201801</creationdate><title>Kernel-based tests for joint independence</title><author>Pfister, Niklas ; Bühlmann, Peter ; Schölkopf, Bernhard ; Peters, Jonas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4585-cfbb92da5cb3f61e6bc5ba8e894c3cd6780d76eb3fc7dcc5269b15a7d2fea7643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Causal inference</topic><topic>Criteria</topic><topic>Discovery</topic><topic>Hilbert space</topic><topic>Independence test</topic><topic>Independent variables</topic><topic>Kernel methods</topic><topic>Permutations</topic><topic>Random variables</topic><topic>Regression analysis</topic><topic>Statistical methods</topic><topic>Statistics</topic><topic>Variables</topic><topic>V‐statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pfister, Niklas</creatorcontrib><creatorcontrib>Bühlmann, Peter</creatorcontrib><creatorcontrib>Schölkopf, Bernhard</creatorcontrib><creatorcontrib>Peters, Jonas</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Technology Research Database</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of the Royal Statistical Society. Series B, Statistical methodology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pfister, Niklas</au><au>Bühlmann, Peter</au><au>Schölkopf, Bernhard</au><au>Peters, Jonas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kernel-based tests for joint independence</atitle><jtitle>Journal of the Royal Statistical Society. Series B, Statistical methodology</jtitle><date>2018-01</date><risdate>2018</risdate><volume>80</volume><issue>1</issue><spage>5</spage><epage>31</epage><pages>5-31</pages><issn>1369-7412</issn><eissn>1467-9868</eissn><abstract>We investigate the problem of testing whether d possibly multivariate random variables, which may or may not be continuous, are jointly (or mutually) independent. Our method builds on ideas of the two-variable Hilbert–Schmidt independence criterion but allows for an arbitrary number of variables. We embed the joint distribution and the product of the marginals in a reproducing kernel Hilbert space and define the d-variable Hilbert–Schmidt independence criterion dHSIC as the squared distance between the embeddings. In the population case, the value of dHSIC is 0 if and only if the d variables are jointly independent, as long as the kernel is characteristic. On the basis of an empirical estimate of dHSIC, we investigate three non-parametric hypothesis tests: a permutation test, a bootstrap analogue and a procedure based on a gamma approximation. We apply non-parametric independence testing to a problem in causal discovery and illustrate the new methods on simulated and real data sets.</abstract><cop>Oxford</cop><pub>John Wiley & Sons Ltd</pub><doi>10.1111/rssb.12235</doi><tpages>27</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1369-7412 |
ispartof | Journal of the Royal Statistical Society. Series B, Statistical methodology, 2018-01, Vol.80 (1), p.5-31 |
issn | 1369-7412 1467-9868 |
language | eng |
recordid | cdi_proquest_journals_1978150256 |
source | Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current); Wiley Online Library Journals Frontfile Complete; Business Source Complete; JSTOR Mathematics & Statistics |
subjects | Causal inference Criteria Discovery Hilbert space Independence test Independent variables Kernel methods Permutations Random variables Regression analysis Statistical methods Statistics Variables V‐statistics |
title | Kernel-based tests for joint independence |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T08%3A16%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kernel-based%20tests%20for%20joint%20independence&rft.jtitle=Journal%20of%20the%20Royal%20Statistical%20Society.%20Series%20B,%20Statistical%20methodology&rft.au=Pfister,%20Niklas&rft.date=2018-01&rft.volume=80&rft.issue=1&rft.spage=5&rft.epage=31&rft.pages=5-31&rft.issn=1369-7412&rft.eissn=1467-9868&rft_id=info:doi/10.1111/rssb.12235&rft_dat=%3Cjstor_proqu%3E44681792%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1978150256&rft_id=info:pmid/&rft_jstor_id=44681792&rfr_iscdi=true |