High-Latitude Thermosphere Neutral Density Response to Solar Wind Dynamic Pressure Enhancement
We examine the response of the thermosphere to the impact of solar wind dynamic pressure enhancements using observations and global magneto-hydrodynamics (MHD) simulations by the OpenGGCM model. Combining neutral density observations from the Challenging Minisatellite Payload (CHAMP) and the Gravity...
Gespeichert in:
Veröffentlicht in: | Journal of geophysical research. Space physics 2017-11, Vol.122 (11), p.11,559-11,578 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11,578 |
---|---|
container_issue | 11 |
container_start_page | 11,559 |
container_title | Journal of geophysical research. Space physics |
container_volume | 122 |
creator | Shi, Y. Zesta, E. Connor, H. K. Su, Y.-J. Sutton, E. K. Huang, C. Y. Ober, D. M. Christodoulou, C. Delay, S. Oliveira, D. M. |
description | We examine the response of the thermosphere to the impact of solar wind dynamic pressure enhancements using observations and global magneto-hydrodynamics (MHD) simulations by the OpenGGCM model. Combining neutral density observations from the Challenging Minisatellite Payload (CHAMP) and the Gravity Recovery and Climate Experiment (GRACE) satellites with simultaneous Poynting flux measurements from the Defense Meteorological Satellite Program (DMSP) F16, we find that thermospheric density as well as downward Poynting flux intensified shortly after a sudden enhancement of the solar wind dynamic pressure. The intensification manifested mostly on the dayside high-latitude region with peak intensity in the vicinity of the noon and prenoon cusp. OpenGGCM modeling results show that the ionospheric Joule heating increased abruptly in response to the sudden enhancement of the dynamic pressure in the same region as the observed Poynting flux and neutral density enhancements. The modeling results show that the enhanced Joule heating coincides, both in time and location, with the appearance of a pair of high-latitude localized field-aligned currents (FACs) in the cusp region. The FACs intensified and extended azimuthally. Coincidental with the solar wind dynamic pressure enhancement, the y component of the interplanetary magnetic field (IMF) By became strongly positive and, in addition, had some large fluctuations. We explore the separate and combined effects of the dynamic pressure and IMF By perturbations, with specifically designed simulation experiments that isolate the effect of each solar wind parameter. We find that the dynamic pressure enhancement is the primary source for the Joule heating and neutral density enhancements, but the IMF By modulates the level of enhancement. |
doi_str_mv | 10.1002/2017ja023889 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1978089652</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1978089652</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4325-1f04877d23b1b83c3cbe23214f4ef29cd9b08a1219382735acb29a10e26e29593</originalsourceid><addsrcrecordid>eNp9kL1PwzAQxSMEElVhY2SwxErAH3Fjj1VbWqoKUCliw3KSC02VOMFOhPLf4yoMTNzyTqffuzu9ILgi-I5gTO8pJvFBY8qEkCfBiJKJDGWE6emf_jy4dO6AfQk_InwUfKyKz3240W3Rdhmg3R5sVbvGC6An6FqrSzQH44q2R1twTW0coLZGr3WpLXovTIbmvdFVkaIXC8513rcwe21SqMC0F8FZrksHl786Dt4eFrvZKtw8Lx9n002YRozykOQ4EnGcUZaQRLCUpQlQRkmUR5BTmWYywUITSiQTNGZcpwmVmmCgE6CSSzYOboa9ja2_OnCtOtSdNf6kIjIWWMgJp566HajU1s5ZyFVji0rbXhGsjiGqY4jr6RCix9mAfxcl9P-yar3cTrl_jnvX9eAy2mllWuuOpPCZMy4w-wHWAXpv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1978089652</pqid></control><display><type>article</type><title>High-Latitude Thermosphere Neutral Density Response to Solar Wind Dynamic Pressure Enhancement</title><source>Wiley Journals</source><source>NASA Technical Reports Server</source><source>Wiley Online Library (Open Access Collection)</source><creator>Shi, Y. ; Zesta, E. ; Connor, H. K. ; Su, Y.-J. ; Sutton, E. K. ; Huang, C. Y. ; Ober, D. M. ; Christodoulou, C. ; Delay, S. ; Oliveira, D. M.</creator><creatorcontrib>Shi, Y. ; Zesta, E. ; Connor, H. K. ; Su, Y.-J. ; Sutton, E. K. ; Huang, C. Y. ; Ober, D. M. ; Christodoulou, C. ; Delay, S. ; Oliveira, D. M.</creatorcontrib><description>We examine the response of the thermosphere to the impact of solar wind dynamic pressure enhancements using observations and global magneto-hydrodynamics (MHD) simulations by the OpenGGCM model. Combining neutral density observations from the Challenging Minisatellite Payload (CHAMP) and the Gravity Recovery and Climate Experiment (GRACE) satellites with simultaneous Poynting flux measurements from the Defense Meteorological Satellite Program (DMSP) F16, we find that thermospheric density as well as downward Poynting flux intensified shortly after a sudden enhancement of the solar wind dynamic pressure. The intensification manifested mostly on the dayside high-latitude region with peak intensity in the vicinity of the noon and prenoon cusp. OpenGGCM modeling results show that the ionospheric Joule heating increased abruptly in response to the sudden enhancement of the dynamic pressure in the same region as the observed Poynting flux and neutral density enhancements. The modeling results show that the enhanced Joule heating coincides, both in time and location, with the appearance of a pair of high-latitude localized field-aligned currents (FACs) in the cusp region. The FACs intensified and extended azimuthally. Coincidental with the solar wind dynamic pressure enhancement, the y component of the interplanetary magnetic field (IMF) By became strongly positive and, in addition, had some large fluctuations. We explore the separate and combined effects of the dynamic pressure and IMF By perturbations, with specifically designed simulation experiments that isolate the effect of each solar wind parameter. We find that the dynamic pressure enhancement is the primary source for the Joule heating and neutral density enhancements, but the IMF By modulates the level of enhancement.</description><identifier>ISSN: 2169-9402</identifier><identifier>ISSN: 2169-9380</identifier><identifier>EISSN: 2169-9402</identifier><identifier>DOI: 10.1002/2017ja023889</identifier><language>eng</language><publisher>Goddard Space Flight Center: AGU Publications</publisher><subject>Computational fluid dynamics ; Computer simulation ; cusp field‐aligned currents ; Defense programs ; Density ; Dynamic pressure ; Fluctuations ; Fluid flow ; Flux ; GRACE (experiment) ; Gravitation ; Heating ; Hydrodynamics ; IMF By effects ; Interplanetary magnetic field ; Joule heating ; Latitude ; Magnetic fields ; Magnetism ; Magnetohydrodynamics ; Meteorological satellite program ; Meteorological satellites ; Modelling ; Ohmic dissipation ; Physics (General) ; Pressure effects ; Saturn ; Solar wind ; solar wind dynamic pressure ; Solar wind effects ; Thermosphere ; thermosphere response ; Thermospheric heating ; Wind effects</subject><ispartof>Journal of geophysical research. Space physics, 2017-11, Vol.122 (11), p.11,559-11,578</ispartof><rights>2017. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4325-1f04877d23b1b83c3cbe23214f4ef29cd9b08a1219382735acb29a10e26e29593</citedby><cites>FETCH-LOGICAL-c4325-1f04877d23b1b83c3cbe23214f4ef29cd9b08a1219382735acb29a10e26e29593</cites><orcidid>0000-0003-3610-201X ; 0000-0003-2078-7229 ; 0000-0002-1899-5275 ; 0000-0002-0407-3691 ; 0000-0002-6214-4363 ; 0000-0003-1424-7189 ; 0000-0002-1327-1809</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2017JA023889$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2017JA023889$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids></links><search><creatorcontrib>Shi, Y.</creatorcontrib><creatorcontrib>Zesta, E.</creatorcontrib><creatorcontrib>Connor, H. K.</creatorcontrib><creatorcontrib>Su, Y.-J.</creatorcontrib><creatorcontrib>Sutton, E. K.</creatorcontrib><creatorcontrib>Huang, C. Y.</creatorcontrib><creatorcontrib>Ober, D. M.</creatorcontrib><creatorcontrib>Christodoulou, C.</creatorcontrib><creatorcontrib>Delay, S.</creatorcontrib><creatorcontrib>Oliveira, D. M.</creatorcontrib><title>High-Latitude Thermosphere Neutral Density Response to Solar Wind Dynamic Pressure Enhancement</title><title>Journal of geophysical research. Space physics</title><description>We examine the response of the thermosphere to the impact of solar wind dynamic pressure enhancements using observations and global magneto-hydrodynamics (MHD) simulations by the OpenGGCM model. Combining neutral density observations from the Challenging Minisatellite Payload (CHAMP) and the Gravity Recovery and Climate Experiment (GRACE) satellites with simultaneous Poynting flux measurements from the Defense Meteorological Satellite Program (DMSP) F16, we find that thermospheric density as well as downward Poynting flux intensified shortly after a sudden enhancement of the solar wind dynamic pressure. The intensification manifested mostly on the dayside high-latitude region with peak intensity in the vicinity of the noon and prenoon cusp. OpenGGCM modeling results show that the ionospheric Joule heating increased abruptly in response to the sudden enhancement of the dynamic pressure in the same region as the observed Poynting flux and neutral density enhancements. The modeling results show that the enhanced Joule heating coincides, both in time and location, with the appearance of a pair of high-latitude localized field-aligned currents (FACs) in the cusp region. The FACs intensified and extended azimuthally. Coincidental with the solar wind dynamic pressure enhancement, the y component of the interplanetary magnetic field (IMF) By became strongly positive and, in addition, had some large fluctuations. We explore the separate and combined effects of the dynamic pressure and IMF By perturbations, with specifically designed simulation experiments that isolate the effect of each solar wind parameter. We find that the dynamic pressure enhancement is the primary source for the Joule heating and neutral density enhancements, but the IMF By modulates the level of enhancement.</description><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>cusp field‐aligned currents</subject><subject>Defense programs</subject><subject>Density</subject><subject>Dynamic pressure</subject><subject>Fluctuations</subject><subject>Fluid flow</subject><subject>Flux</subject><subject>GRACE (experiment)</subject><subject>Gravitation</subject><subject>Heating</subject><subject>Hydrodynamics</subject><subject>IMF By effects</subject><subject>Interplanetary magnetic field</subject><subject>Joule heating</subject><subject>Latitude</subject><subject>Magnetic fields</subject><subject>Magnetism</subject><subject>Magnetohydrodynamics</subject><subject>Meteorological satellite program</subject><subject>Meteorological satellites</subject><subject>Modelling</subject><subject>Ohmic dissipation</subject><subject>Physics (General)</subject><subject>Pressure effects</subject><subject>Saturn</subject><subject>Solar wind</subject><subject>solar wind dynamic pressure</subject><subject>Solar wind effects</subject><subject>Thermosphere</subject><subject>thermosphere response</subject><subject>Thermospheric heating</subject><subject>Wind effects</subject><issn>2169-9402</issn><issn>2169-9380</issn><issn>2169-9402</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>CYI</sourceid><recordid>eNp9kL1PwzAQxSMEElVhY2SwxErAH3Fjj1VbWqoKUCliw3KSC02VOMFOhPLf4yoMTNzyTqffuzu9ILgi-I5gTO8pJvFBY8qEkCfBiJKJDGWE6emf_jy4dO6AfQk_InwUfKyKz3240W3Rdhmg3R5sVbvGC6An6FqrSzQH44q2R1twTW0coLZGr3WpLXovTIbmvdFVkaIXC8513rcwe21SqMC0F8FZrksHl786Dt4eFrvZKtw8Lx9n002YRozykOQ4EnGcUZaQRLCUpQlQRkmUR5BTmWYywUITSiQTNGZcpwmVmmCgE6CSSzYOboa9ja2_OnCtOtSdNf6kIjIWWMgJp566HajU1s5ZyFVji0rbXhGsjiGqY4jr6RCix9mAfxcl9P-yar3cTrl_jnvX9eAy2mllWuuOpPCZMy4w-wHWAXpv</recordid><startdate>201711</startdate><enddate>201711</enddate><creator>Shi, Y.</creator><creator>Zesta, E.</creator><creator>Connor, H. K.</creator><creator>Su, Y.-J.</creator><creator>Sutton, E. K.</creator><creator>Huang, C. Y.</creator><creator>Ober, D. M.</creator><creator>Christodoulou, C.</creator><creator>Delay, S.</creator><creator>Oliveira, D. M.</creator><general>AGU Publications</general><general>Blackwell Publishing Ltd</general><scope>CYE</scope><scope>CYI</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3610-201X</orcidid><orcidid>https://orcid.org/0000-0003-2078-7229</orcidid><orcidid>https://orcid.org/0000-0002-1899-5275</orcidid><orcidid>https://orcid.org/0000-0002-0407-3691</orcidid><orcidid>https://orcid.org/0000-0002-6214-4363</orcidid><orcidid>https://orcid.org/0000-0003-1424-7189</orcidid><orcidid>https://orcid.org/0000-0002-1327-1809</orcidid></search><sort><creationdate>201711</creationdate><title>High-Latitude Thermosphere Neutral Density Response to Solar Wind Dynamic Pressure Enhancement</title><author>Shi, Y. ; Zesta, E. ; Connor, H. K. ; Su, Y.-J. ; Sutton, E. K. ; Huang, C. Y. ; Ober, D. M. ; Christodoulou, C. ; Delay, S. ; Oliveira, D. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4325-1f04877d23b1b83c3cbe23214f4ef29cd9b08a1219382735acb29a10e26e29593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>cusp field‐aligned currents</topic><topic>Defense programs</topic><topic>Density</topic><topic>Dynamic pressure</topic><topic>Fluctuations</topic><topic>Fluid flow</topic><topic>Flux</topic><topic>GRACE (experiment)</topic><topic>Gravitation</topic><topic>Heating</topic><topic>Hydrodynamics</topic><topic>IMF By effects</topic><topic>Interplanetary magnetic field</topic><topic>Joule heating</topic><topic>Latitude</topic><topic>Magnetic fields</topic><topic>Magnetism</topic><topic>Magnetohydrodynamics</topic><topic>Meteorological satellite program</topic><topic>Meteorological satellites</topic><topic>Modelling</topic><topic>Ohmic dissipation</topic><topic>Physics (General)</topic><topic>Pressure effects</topic><topic>Saturn</topic><topic>Solar wind</topic><topic>solar wind dynamic pressure</topic><topic>Solar wind effects</topic><topic>Thermosphere</topic><topic>thermosphere response</topic><topic>Thermospheric heating</topic><topic>Wind effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Y.</creatorcontrib><creatorcontrib>Zesta, E.</creatorcontrib><creatorcontrib>Connor, H. K.</creatorcontrib><creatorcontrib>Su, Y.-J.</creatorcontrib><creatorcontrib>Sutton, E. K.</creatorcontrib><creatorcontrib>Huang, C. Y.</creatorcontrib><creatorcontrib>Ober, D. M.</creatorcontrib><creatorcontrib>Christodoulou, C.</creatorcontrib><creatorcontrib>Delay, S.</creatorcontrib><creatorcontrib>Oliveira, D. M.</creatorcontrib><collection>NASA Scientific and Technical Information</collection><collection>NASA Technical Reports Server</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of geophysical research. Space physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Y.</au><au>Zesta, E.</au><au>Connor, H. K.</au><au>Su, Y.-J.</au><au>Sutton, E. K.</au><au>Huang, C. Y.</au><au>Ober, D. M.</au><au>Christodoulou, C.</au><au>Delay, S.</au><au>Oliveira, D. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Latitude Thermosphere Neutral Density Response to Solar Wind Dynamic Pressure Enhancement</atitle><jtitle>Journal of geophysical research. Space physics</jtitle><date>2017-11</date><risdate>2017</risdate><volume>122</volume><issue>11</issue><spage>11,559</spage><epage>11,578</epage><pages>11,559-11,578</pages><issn>2169-9402</issn><issn>2169-9380</issn><eissn>2169-9402</eissn><abstract>We examine the response of the thermosphere to the impact of solar wind dynamic pressure enhancements using observations and global magneto-hydrodynamics (MHD) simulations by the OpenGGCM model. Combining neutral density observations from the Challenging Minisatellite Payload (CHAMP) and the Gravity Recovery and Climate Experiment (GRACE) satellites with simultaneous Poynting flux measurements from the Defense Meteorological Satellite Program (DMSP) F16, we find that thermospheric density as well as downward Poynting flux intensified shortly after a sudden enhancement of the solar wind dynamic pressure. The intensification manifested mostly on the dayside high-latitude region with peak intensity in the vicinity of the noon and prenoon cusp. OpenGGCM modeling results show that the ionospheric Joule heating increased abruptly in response to the sudden enhancement of the dynamic pressure in the same region as the observed Poynting flux and neutral density enhancements. The modeling results show that the enhanced Joule heating coincides, both in time and location, with the appearance of a pair of high-latitude localized field-aligned currents (FACs) in the cusp region. The FACs intensified and extended azimuthally. Coincidental with the solar wind dynamic pressure enhancement, the y component of the interplanetary magnetic field (IMF) By became strongly positive and, in addition, had some large fluctuations. We explore the separate and combined effects of the dynamic pressure and IMF By perturbations, with specifically designed simulation experiments that isolate the effect of each solar wind parameter. We find that the dynamic pressure enhancement is the primary source for the Joule heating and neutral density enhancements, but the IMF By modulates the level of enhancement.</abstract><cop>Goddard Space Flight Center</cop><pub>AGU Publications</pub><doi>10.1002/2017ja023889</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-3610-201X</orcidid><orcidid>https://orcid.org/0000-0003-2078-7229</orcidid><orcidid>https://orcid.org/0000-0002-1899-5275</orcidid><orcidid>https://orcid.org/0000-0002-0407-3691</orcidid><orcidid>https://orcid.org/0000-0002-6214-4363</orcidid><orcidid>https://orcid.org/0000-0003-1424-7189</orcidid><orcidid>https://orcid.org/0000-0002-1327-1809</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-9402 |
ispartof | Journal of geophysical research. Space physics, 2017-11, Vol.122 (11), p.11,559-11,578 |
issn | 2169-9402 2169-9380 2169-9402 |
language | eng |
recordid | cdi_proquest_journals_1978089652 |
source | Wiley Journals; NASA Technical Reports Server; Wiley Online Library (Open Access Collection) |
subjects | Computational fluid dynamics Computer simulation cusp field‐aligned currents Defense programs Density Dynamic pressure Fluctuations Fluid flow Flux GRACE (experiment) Gravitation Heating Hydrodynamics IMF By effects Interplanetary magnetic field Joule heating Latitude Magnetic fields Magnetism Magnetohydrodynamics Meteorological satellite program Meteorological satellites Modelling Ohmic dissipation Physics (General) Pressure effects Saturn Solar wind solar wind dynamic pressure Solar wind effects Thermosphere thermosphere response Thermospheric heating Wind effects |
title | High-Latitude Thermosphere Neutral Density Response to Solar Wind Dynamic Pressure Enhancement |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T14%3A55%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Latitude%20Thermosphere%20Neutral%20Density%20Response%20to%20Solar%20Wind%20Dynamic%20Pressure%20Enhancement&rft.jtitle=Journal%20of%20geophysical%20research.%20Space%20physics&rft.au=Shi,%20Y.&rft.date=2017-11&rft.volume=122&rft.issue=11&rft.spage=11,559&rft.epage=11,578&rft.pages=11,559-11,578&rft.issn=2169-9402&rft.eissn=2169-9402&rft_id=info:doi/10.1002/2017ja023889&rft_dat=%3Cproquest_cross%3E1978089652%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1978089652&rft_id=info:pmid/&rfr_iscdi=true |