The surface chemistry of metallurgical aluminas

We have studied the evolution of surface basicity as a function of calcination temperature in a range of transition alumina‐rich analogues of metallurgical grade aluminas produced by calcination of Bayer gibbsite. Specific basicity, the number of basic sites per unit surface area, was determined by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Surface and interface analysis 2017-12, Vol.49 (13), p.1351-1358
Hauptverfasser: McIntosh, Grant J., Metson, James B., Hyland, Margaret M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1358
container_issue 13
container_start_page 1351
container_title Surface and interface analysis
container_volume 49
creator McIntosh, Grant J.
Metson, James B.
Hyland, Margaret M.
description We have studied the evolution of surface basicity as a function of calcination temperature in a range of transition alumina‐rich analogues of metallurgical grade aluminas produced by calcination of Bayer gibbsite. Specific basicity, the number of basic sites per unit surface area, was determined by thermometric back‐titration and found to increase with calcination temperature up to ~700°C to 800°C, decreasing dramatically thereafter. The population of tetrahedrally coordinated Al3+, which exhibits a qualitatively similar evolution, was determined by Al K‐edge near‐edge X‐ray absorption fine structure (NEXAFS) spectroscopy but found not to correlate with basicity changes. Interestingly, a shift to higher and then lower binding energy of Al 2p photoelectrons by X‐ray photoelectron spectroscopy and changes in the intensity of O K‐edge NEXAFS spectra do appear to correlate with surface basicity. Exploiting the differing surface sensitivities of NEXAFS spectra collected in partial electron and total fluorescence yield modes, we find O K‐edge spectra intensities, Al 2p X‐ray photoelectron spectrometer binding energies, and surface basicity all reflect the reorganisation of internal surfaces rather than changes in AlO4:AlO6 occupation. Copyright © 2017 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/sia.6327
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1977874999</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1977874999</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3307-d17f40a566331e09e3fe21dd8931d4696307f7351decfe58392471b511c9e3393</originalsourceid><addsrcrecordid>eNp10MFLwzAUx_EgCtYp-CcUvHjJlpe0SXMcQ-dg4MF5DjF9cR3tOpMW2X9va716epcP7wdfQu6BzYExvoiVnUvB1QVJgGlJtYbikiQMMk55xuGa3MR4YIwVopAJWez2mMY-eOswdXtsqtiFc9r6tMHO1nUfPitn69TWfVMdbbwlV97WEe_-7oy8Pz_tVi90-7rerJZb6oRgipagfMZsLqUQgEyj8MihLAstoMyklgPySuRQovOYF0LzTMFHDuAGK7SYkYfp7ym0Xz3GzhzaPhyHSQNaqUJlWo_qcVIutDEG9OYUqsaGswFmxhxmyGHGHAOlE_2uajz_68zbZvnrfwDLW16x</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1977874999</pqid></control><display><type>article</type><title>The surface chemistry of metallurgical aluminas</title><source>Access via Wiley Online Library</source><creator>McIntosh, Grant J. ; Metson, James B. ; Hyland, Margaret M.</creator><creatorcontrib>McIntosh, Grant J. ; Metson, James B. ; Hyland, Margaret M.</creatorcontrib><description>We have studied the evolution of surface basicity as a function of calcination temperature in a range of transition alumina‐rich analogues of metallurgical grade aluminas produced by calcination of Bayer gibbsite. Specific basicity, the number of basic sites per unit surface area, was determined by thermometric back‐titration and found to increase with calcination temperature up to ~700°C to 800°C, decreasing dramatically thereafter. The population of tetrahedrally coordinated Al3+, which exhibits a qualitatively similar evolution, was determined by Al K‐edge near‐edge X‐ray absorption fine structure (NEXAFS) spectroscopy but found not to correlate with basicity changes. Interestingly, a shift to higher and then lower binding energy of Al 2p photoelectrons by X‐ray photoelectron spectroscopy and changes in the intensity of O K‐edge NEXAFS spectra do appear to correlate with surface basicity. Exploiting the differing surface sensitivities of NEXAFS spectra collected in partial electron and total fluorescence yield modes, we find O K‐edge spectra intensities, Al 2p X‐ray photoelectron spectrometer binding energies, and surface basicity all reflect the reorganisation of internal surfaces rather than changes in AlO4:AlO6 occupation. Copyright © 2017 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0142-2421</identifier><identifier>EISSN: 1096-9918</identifier><identifier>DOI: 10.1002/sia.6327</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>alumina calcination ; alumina catalyst ; alumina sorbent ; aluminium production ; Aluminum base alloys ; Aluminum oxide ; Basicity ; Bayer process ; Binding energy ; Evolution ; Fine structure ; Fluorescence ; Gibbsite ; Metallurgical analysis ; Photoelectrons ; Quality ; Roasting ; Spectral sensitivity ; surface acidity/basicity ; Titration ; Transitional aluminas ; X‐ray absorption spectroscopy</subject><ispartof>Surface and interface analysis, 2017-12, Vol.49 (13), p.1351-1358</ispartof><rights>Copyright © 2017 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3307-d17f40a566331e09e3fe21dd8931d4696307f7351decfe58392471b511c9e3393</citedby><cites>FETCH-LOGICAL-c3307-d17f40a566331e09e3fe21dd8931d4696307f7351decfe58392471b511c9e3393</cites><orcidid>0000-0002-9484-2473</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsia.6327$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsia.6327$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids></links><search><creatorcontrib>McIntosh, Grant J.</creatorcontrib><creatorcontrib>Metson, James B.</creatorcontrib><creatorcontrib>Hyland, Margaret M.</creatorcontrib><title>The surface chemistry of metallurgical aluminas</title><title>Surface and interface analysis</title><description>We have studied the evolution of surface basicity as a function of calcination temperature in a range of transition alumina‐rich analogues of metallurgical grade aluminas produced by calcination of Bayer gibbsite. Specific basicity, the number of basic sites per unit surface area, was determined by thermometric back‐titration and found to increase with calcination temperature up to ~700°C to 800°C, decreasing dramatically thereafter. The population of tetrahedrally coordinated Al3+, which exhibits a qualitatively similar evolution, was determined by Al K‐edge near‐edge X‐ray absorption fine structure (NEXAFS) spectroscopy but found not to correlate with basicity changes. Interestingly, a shift to higher and then lower binding energy of Al 2p photoelectrons by X‐ray photoelectron spectroscopy and changes in the intensity of O K‐edge NEXAFS spectra do appear to correlate with surface basicity. Exploiting the differing surface sensitivities of NEXAFS spectra collected in partial electron and total fluorescence yield modes, we find O K‐edge spectra intensities, Al 2p X‐ray photoelectron spectrometer binding energies, and surface basicity all reflect the reorganisation of internal surfaces rather than changes in AlO4:AlO6 occupation. Copyright © 2017 John Wiley &amp; Sons, Ltd.</description><subject>alumina calcination</subject><subject>alumina catalyst</subject><subject>alumina sorbent</subject><subject>aluminium production</subject><subject>Aluminum base alloys</subject><subject>Aluminum oxide</subject><subject>Basicity</subject><subject>Bayer process</subject><subject>Binding energy</subject><subject>Evolution</subject><subject>Fine structure</subject><subject>Fluorescence</subject><subject>Gibbsite</subject><subject>Metallurgical analysis</subject><subject>Photoelectrons</subject><subject>Quality</subject><subject>Roasting</subject><subject>Spectral sensitivity</subject><subject>surface acidity/basicity</subject><subject>Titration</subject><subject>Transitional aluminas</subject><subject>X‐ray absorption spectroscopy</subject><issn>0142-2421</issn><issn>1096-9918</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp10MFLwzAUx_EgCtYp-CcUvHjJlpe0SXMcQ-dg4MF5DjF9cR3tOpMW2X9va716epcP7wdfQu6BzYExvoiVnUvB1QVJgGlJtYbikiQMMk55xuGa3MR4YIwVopAJWez2mMY-eOswdXtsqtiFc9r6tMHO1nUfPitn69TWfVMdbbwlV97WEe_-7oy8Pz_tVi90-7rerJZb6oRgipagfMZsLqUQgEyj8MihLAstoMyklgPySuRQovOYF0LzTMFHDuAGK7SYkYfp7ym0Xz3GzhzaPhyHSQNaqUJlWo_qcVIutDEG9OYUqsaGswFmxhxmyGHGHAOlE_2uajz_68zbZvnrfwDLW16x</recordid><startdate>201712</startdate><enddate>201712</enddate><creator>McIntosh, Grant J.</creator><creator>Metson, James B.</creator><creator>Hyland, Margaret M.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9484-2473</orcidid></search><sort><creationdate>201712</creationdate><title>The surface chemistry of metallurgical aluminas</title><author>McIntosh, Grant J. ; Metson, James B. ; Hyland, Margaret M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3307-d17f40a566331e09e3fe21dd8931d4696307f7351decfe58392471b511c9e3393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>alumina calcination</topic><topic>alumina catalyst</topic><topic>alumina sorbent</topic><topic>aluminium production</topic><topic>Aluminum base alloys</topic><topic>Aluminum oxide</topic><topic>Basicity</topic><topic>Bayer process</topic><topic>Binding energy</topic><topic>Evolution</topic><topic>Fine structure</topic><topic>Fluorescence</topic><topic>Gibbsite</topic><topic>Metallurgical analysis</topic><topic>Photoelectrons</topic><topic>Quality</topic><topic>Roasting</topic><topic>Spectral sensitivity</topic><topic>surface acidity/basicity</topic><topic>Titration</topic><topic>Transitional aluminas</topic><topic>X‐ray absorption spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McIntosh, Grant J.</creatorcontrib><creatorcontrib>Metson, James B.</creatorcontrib><creatorcontrib>Hyland, Margaret M.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Surface and interface analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McIntosh, Grant J.</au><au>Metson, James B.</au><au>Hyland, Margaret M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The surface chemistry of metallurgical aluminas</atitle><jtitle>Surface and interface analysis</jtitle><date>2017-12</date><risdate>2017</risdate><volume>49</volume><issue>13</issue><spage>1351</spage><epage>1358</epage><pages>1351-1358</pages><issn>0142-2421</issn><eissn>1096-9918</eissn><abstract>We have studied the evolution of surface basicity as a function of calcination temperature in a range of transition alumina‐rich analogues of metallurgical grade aluminas produced by calcination of Bayer gibbsite. Specific basicity, the number of basic sites per unit surface area, was determined by thermometric back‐titration and found to increase with calcination temperature up to ~700°C to 800°C, decreasing dramatically thereafter. The population of tetrahedrally coordinated Al3+, which exhibits a qualitatively similar evolution, was determined by Al K‐edge near‐edge X‐ray absorption fine structure (NEXAFS) spectroscopy but found not to correlate with basicity changes. Interestingly, a shift to higher and then lower binding energy of Al 2p photoelectrons by X‐ray photoelectron spectroscopy and changes in the intensity of O K‐edge NEXAFS spectra do appear to correlate with surface basicity. Exploiting the differing surface sensitivities of NEXAFS spectra collected in partial electron and total fluorescence yield modes, we find O K‐edge spectra intensities, Al 2p X‐ray photoelectron spectrometer binding energies, and surface basicity all reflect the reorganisation of internal surfaces rather than changes in AlO4:AlO6 occupation. Copyright © 2017 John Wiley &amp; Sons, Ltd.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/sia.6327</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-9484-2473</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0142-2421
ispartof Surface and interface analysis, 2017-12, Vol.49 (13), p.1351-1358
issn 0142-2421
1096-9918
language eng
recordid cdi_proquest_journals_1977874999
source Access via Wiley Online Library
subjects alumina calcination
alumina catalyst
alumina sorbent
aluminium production
Aluminum base alloys
Aluminum oxide
Basicity
Bayer process
Binding energy
Evolution
Fine structure
Fluorescence
Gibbsite
Metallurgical analysis
Photoelectrons
Quality
Roasting
Spectral sensitivity
surface acidity/basicity
Titration
Transitional aluminas
X‐ray absorption spectroscopy
title The surface chemistry of metallurgical aluminas
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T06%3A24%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20surface%20chemistry%20of%20metallurgical%20aluminas&rft.jtitle=Surface%20and%20interface%20analysis&rft.au=McIntosh,%20Grant%20J.&rft.date=2017-12&rft.volume=49&rft.issue=13&rft.spage=1351&rft.epage=1358&rft.pages=1351-1358&rft.issn=0142-2421&rft.eissn=1096-9918&rft_id=info:doi/10.1002/sia.6327&rft_dat=%3Cproquest_cross%3E1977874999%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1977874999&rft_id=info:pmid/&rfr_iscdi=true