Fabrication of an Anisotropic Superhydrophobic Polymer Surface Using Compression Molding and Dip Coating
Many studies of anisotropic wetting surfaces with directional structures inspired from rice leaves, bamboo leaves, and butterfly wings have been carried out because of their unique liquid shape control and transportation. In this study, a precision mechanical cutting process, ultra-precision machini...
Gespeichert in:
Veröffentlicht in: | Coatings (Basel) 2017-11, Vol.7 (11), p.194 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | 194 |
container_title | Coatings (Basel) |
container_volume | 7 |
creator | Lee, Kyong-Min Ngo, Chi-Vinh Jeong, Ji-Young Jeon, Eun-chae Je, Tae-Jin Chun, Doo-Man |
description | Many studies of anisotropic wetting surfaces with directional structures inspired from rice leaves, bamboo leaves, and butterfly wings have been carried out because of their unique liquid shape control and transportation. In this study, a precision mechanical cutting process, ultra-precision machining using a single crystal diamond tool, was used to fabricate a mold with microscale directional patterns of triangular cross-sectional shape for good moldability, and the patterns were duplicated on a flat thermoplastic polymer plate by compression molding for the mass production of an anisotropic wetting polymer surface. Anisotropic wetting was observed only with microscale patterns, but the sliding of water could not be achieved because of the pinning effect of the micro-structure. Therefore, an additional dip coating process with 1H, 1H, 2H, 2H-perfluorodecythricholosilanes, and TiO2 nanoparticles was applied for a small sliding angle with nanoscale patterns and a low surface energy. The anisotropic superhydrophobic surface was fabricated and the surface morphology and anisotropic wetting behaviors were investigated. The suggested fabrication method can be used to mass produce an anisotropic superhydrophobic polymer surface, demonstrating the feasibility of liquid shape control and transportation. |
doi_str_mv | 10.3390/coatings7110194 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1977856140</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1977856140</sourcerecordid><originalsourceid>FETCH-LOGICAL-c310t-27ffe6b51195f756503f7ec0d6209eaf99f1327f89b26178d536ff83cf2eac4c3</originalsourceid><addsrcrecordid>eNpdUMFOwzAMjRBITGNnrpE4l8VNmzTHaTCGNAQS7FylaUw7rU1JusP-noxxQPhi-_n5PcuE3AK751yxuXF6bPvPIAEYqOyCTFImVSIySC__1NdkFsKOxVDAC1AT0qx05VsTt11PHVLd00XfBjd6N7SGvh8G65tjHbvGVRF4c_tjZ30ceNTG0m2ItnTpusHbEE4iL25fnzDd1_ShHeLs57QbcoV6H-zsN0_JdvX4sVwnm9en5-VikxgObExSiWhFlQOoHGUucsZRWsNqkTJlNSqFwCOpUFUqQBZ1zgViwQ2mVpvM8Cm5O-sO3n0dbBjLnTv4PlqWoKQscgEZi6z5mWW8C8FbLAffdtofS2Dl6aPlv4_ybyBDbCc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1977856140</pqid></control><display><type>article</type><title>Fabrication of an Anisotropic Superhydrophobic Polymer Surface Using Compression Molding and Dip Coating</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Alma/SFX Local Collection</source><creator>Lee, Kyong-Min ; Ngo, Chi-Vinh ; Jeong, Ji-Young ; Jeon, Eun-chae ; Je, Tae-Jin ; Chun, Doo-Man</creator><creatorcontrib>Lee, Kyong-Min ; Ngo, Chi-Vinh ; Jeong, Ji-Young ; Jeon, Eun-chae ; Je, Tae-Jin ; Chun, Doo-Man</creatorcontrib><description>Many studies of anisotropic wetting surfaces with directional structures inspired from rice leaves, bamboo leaves, and butterfly wings have been carried out because of their unique liquid shape control and transportation. In this study, a precision mechanical cutting process, ultra-precision machining using a single crystal diamond tool, was used to fabricate a mold with microscale directional patterns of triangular cross-sectional shape for good moldability, and the patterns were duplicated on a flat thermoplastic polymer plate by compression molding for the mass production of an anisotropic wetting polymer surface. Anisotropic wetting was observed only with microscale patterns, but the sliding of water could not be achieved because of the pinning effect of the micro-structure. Therefore, an additional dip coating process with 1H, 1H, 2H, 2H-perfluorodecythricholosilanes, and TiO2 nanoparticles was applied for a small sliding angle with nanoscale patterns and a low surface energy. The anisotropic superhydrophobic surface was fabricated and the surface morphology and anisotropic wetting behaviors were investigated. The suggested fabrication method can be used to mass produce an anisotropic superhydrophobic polymer surface, demonstrating the feasibility of liquid shape control and transportation.</description><identifier>ISSN: 2079-6412</identifier><identifier>EISSN: 2079-6412</identifier><identifier>DOI: 10.3390/coatings7110194</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Anisotropy ; Bamboo ; Coating effects ; Diamond machining ; Diamond tools ; Hydrophobic surfaces ; Hydrophobicity ; Immersion coating ; Mass production ; Moldability ; Molding (process) ; Plates (structural members) ; Polymers ; Precision machining ; Pressure molding ; Shape control ; Sliding ; Surface energy ; Titanium oxides ; Transportation ; Wetting</subject><ispartof>Coatings (Basel), 2017-11, Vol.7 (11), p.194</ispartof><rights>Copyright MDPI AG 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c310t-27ffe6b51195f756503f7ec0d6209eaf99f1327f89b26178d536ff83cf2eac4c3</citedby><cites>FETCH-LOGICAL-c310t-27ffe6b51195f756503f7ec0d6209eaf99f1327f89b26178d536ff83cf2eac4c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Lee, Kyong-Min</creatorcontrib><creatorcontrib>Ngo, Chi-Vinh</creatorcontrib><creatorcontrib>Jeong, Ji-Young</creatorcontrib><creatorcontrib>Jeon, Eun-chae</creatorcontrib><creatorcontrib>Je, Tae-Jin</creatorcontrib><creatorcontrib>Chun, Doo-Man</creatorcontrib><title>Fabrication of an Anisotropic Superhydrophobic Polymer Surface Using Compression Molding and Dip Coating</title><title>Coatings (Basel)</title><description>Many studies of anisotropic wetting surfaces with directional structures inspired from rice leaves, bamboo leaves, and butterfly wings have been carried out because of their unique liquid shape control and transportation. In this study, a precision mechanical cutting process, ultra-precision machining using a single crystal diamond tool, was used to fabricate a mold with microscale directional patterns of triangular cross-sectional shape for good moldability, and the patterns were duplicated on a flat thermoplastic polymer plate by compression molding for the mass production of an anisotropic wetting polymer surface. Anisotropic wetting was observed only with microscale patterns, but the sliding of water could not be achieved because of the pinning effect of the micro-structure. Therefore, an additional dip coating process with 1H, 1H, 2H, 2H-perfluorodecythricholosilanes, and TiO2 nanoparticles was applied for a small sliding angle with nanoscale patterns and a low surface energy. The anisotropic superhydrophobic surface was fabricated and the surface morphology and anisotropic wetting behaviors were investigated. The suggested fabrication method can be used to mass produce an anisotropic superhydrophobic polymer surface, demonstrating the feasibility of liquid shape control and transportation.</description><subject>Anisotropy</subject><subject>Bamboo</subject><subject>Coating effects</subject><subject>Diamond machining</subject><subject>Diamond tools</subject><subject>Hydrophobic surfaces</subject><subject>Hydrophobicity</subject><subject>Immersion coating</subject><subject>Mass production</subject><subject>Moldability</subject><subject>Molding (process)</subject><subject>Plates (structural members)</subject><subject>Polymers</subject><subject>Precision machining</subject><subject>Pressure molding</subject><subject>Shape control</subject><subject>Sliding</subject><subject>Surface energy</subject><subject>Titanium oxides</subject><subject>Transportation</subject><subject>Wetting</subject><issn>2079-6412</issn><issn>2079-6412</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdUMFOwzAMjRBITGNnrpE4l8VNmzTHaTCGNAQS7FylaUw7rU1JusP-noxxQPhi-_n5PcuE3AK751yxuXF6bPvPIAEYqOyCTFImVSIySC__1NdkFsKOxVDAC1AT0qx05VsTt11PHVLd00XfBjd6N7SGvh8G65tjHbvGVRF4c_tjZ30ceNTG0m2ItnTpusHbEE4iL25fnzDd1_ShHeLs57QbcoV6H-zsN0_JdvX4sVwnm9en5-VikxgObExSiWhFlQOoHGUucsZRWsNqkTJlNSqFwCOpUFUqQBZ1zgViwQ2mVpvM8Cm5O-sO3n0dbBjLnTv4PlqWoKQscgEZi6z5mWW8C8FbLAffdtofS2Dl6aPlv4_ybyBDbCc</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>Lee, Kyong-Min</creator><creator>Ngo, Chi-Vinh</creator><creator>Jeong, Ji-Young</creator><creator>Jeon, Eun-chae</creator><creator>Je, Tae-Jin</creator><creator>Chun, Doo-Man</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20171101</creationdate><title>Fabrication of an Anisotropic Superhydrophobic Polymer Surface Using Compression Molding and Dip Coating</title><author>Lee, Kyong-Min ; Ngo, Chi-Vinh ; Jeong, Ji-Young ; Jeon, Eun-chae ; Je, Tae-Jin ; Chun, Doo-Man</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c310t-27ffe6b51195f756503f7ec0d6209eaf99f1327f89b26178d536ff83cf2eac4c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Anisotropy</topic><topic>Bamboo</topic><topic>Coating effects</topic><topic>Diamond machining</topic><topic>Diamond tools</topic><topic>Hydrophobic surfaces</topic><topic>Hydrophobicity</topic><topic>Immersion coating</topic><topic>Mass production</topic><topic>Moldability</topic><topic>Molding (process)</topic><topic>Plates (structural members)</topic><topic>Polymers</topic><topic>Precision machining</topic><topic>Pressure molding</topic><topic>Shape control</topic><topic>Sliding</topic><topic>Surface energy</topic><topic>Titanium oxides</topic><topic>Transportation</topic><topic>Wetting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Kyong-Min</creatorcontrib><creatorcontrib>Ngo, Chi-Vinh</creatorcontrib><creatorcontrib>Jeong, Ji-Young</creatorcontrib><creatorcontrib>Jeon, Eun-chae</creatorcontrib><creatorcontrib>Je, Tae-Jin</creatorcontrib><creatorcontrib>Chun, Doo-Man</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Coatings (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Kyong-Min</au><au>Ngo, Chi-Vinh</au><au>Jeong, Ji-Young</au><au>Jeon, Eun-chae</au><au>Je, Tae-Jin</au><au>Chun, Doo-Man</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication of an Anisotropic Superhydrophobic Polymer Surface Using Compression Molding and Dip Coating</atitle><jtitle>Coatings (Basel)</jtitle><date>2017-11-01</date><risdate>2017</risdate><volume>7</volume><issue>11</issue><spage>194</spage><pages>194-</pages><issn>2079-6412</issn><eissn>2079-6412</eissn><abstract>Many studies of anisotropic wetting surfaces with directional structures inspired from rice leaves, bamboo leaves, and butterfly wings have been carried out because of their unique liquid shape control and transportation. In this study, a precision mechanical cutting process, ultra-precision machining using a single crystal diamond tool, was used to fabricate a mold with microscale directional patterns of triangular cross-sectional shape for good moldability, and the patterns were duplicated on a flat thermoplastic polymer plate by compression molding for the mass production of an anisotropic wetting polymer surface. Anisotropic wetting was observed only with microscale patterns, but the sliding of water could not be achieved because of the pinning effect of the micro-structure. Therefore, an additional dip coating process with 1H, 1H, 2H, 2H-perfluorodecythricholosilanes, and TiO2 nanoparticles was applied for a small sliding angle with nanoscale patterns and a low surface energy. The anisotropic superhydrophobic surface was fabricated and the surface morphology and anisotropic wetting behaviors were investigated. The suggested fabrication method can be used to mass produce an anisotropic superhydrophobic polymer surface, demonstrating the feasibility of liquid shape control and transportation.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/coatings7110194</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-6412 |
ispartof | Coatings (Basel), 2017-11, Vol.7 (11), p.194 |
issn | 2079-6412 2079-6412 |
language | eng |
recordid | cdi_proquest_journals_1977856140 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute; Alma/SFX Local Collection |
subjects | Anisotropy Bamboo Coating effects Diamond machining Diamond tools Hydrophobic surfaces Hydrophobicity Immersion coating Mass production Moldability Molding (process) Plates (structural members) Polymers Precision machining Pressure molding Shape control Sliding Surface energy Titanium oxides Transportation Wetting |
title | Fabrication of an Anisotropic Superhydrophobic Polymer Surface Using Compression Molding and Dip Coating |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T07%3A46%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20of%20an%20Anisotropic%20Superhydrophobic%20Polymer%20Surface%20Using%20Compression%20Molding%20and%20Dip%20Coating&rft.jtitle=Coatings%20(Basel)&rft.au=Lee,%20Kyong-Min&rft.date=2017-11-01&rft.volume=7&rft.issue=11&rft.spage=194&rft.pages=194-&rft.issn=2079-6412&rft.eissn=2079-6412&rft_id=info:doi/10.3390/coatings7110194&rft_dat=%3Cproquest_cross%3E1977856140%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1977856140&rft_id=info:pmid/&rfr_iscdi=true |