Optimal difference-based estimation for partially linear models

Difference-based methods have attracted increasing attention for analyzing partially linear models in the recent literature. In this paper, we first propose to solve the optimal sequence selection problem in difference-based estimation for the linear component. To achieve the goal, a family of new s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational statistics 2018-06, Vol.33 (2), p.863-885
Hauptverfasser: Zhou, Yuejin, Cheng, Yebin, Dai, Wenlin, Tong, Tiejun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 885
container_issue 2
container_start_page 863
container_title Computational statistics
container_volume 33
creator Zhou, Yuejin
Cheng, Yebin
Dai, Wenlin
Tong, Tiejun
description Difference-based methods have attracted increasing attention for analyzing partially linear models in the recent literature. In this paper, we first propose to solve the optimal sequence selection problem in difference-based estimation for the linear component. To achieve the goal, a family of new sequences and a cross-validation method for selecting the adaptive sequence are proposed. We demonstrate that the existing sequences are only extreme cases in the proposed family. Secondly, we propose a new estimator for the residual variance by fitting a linear regression method to some difference-based estimators. Our proposed estimator achieves the asymptotic optimal rate of mean squared error. Simulation studies also demonstrate that our proposed estimator performs better than the existing estimator, especially when the sample size is small and the nonparametric function is rough.
doi_str_mv 10.1007/s00180-017-0786-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1977616175</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1977616175</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-458417cbdb0811719c2c8cb327b1080d30d8f439823f0b40244c1219c57885293</originalsourceid><addsrcrecordid>eNp1kDtPxDAQhC0EEuHgB9BFojbs2o7tVAideEknXQO1lfiBcsolwc4V9-_xKRQ0VFvsN7M7Q8gtwj0CqIcEgBoooKKgtKT8jBQokdNaVvqcFFALTgVIdkmuUtoBMKYYFuRxO83dvulL14Xgox-sp22TvCt9Oi3mbhzKMMZyauLcNX1_LPtu8E0s96PzfbomF6Hpk7_5nSvy-fL8sX6jm-3r-_ppQy1HOVNRaYHKtq4Fjaiwtsxq23KmWgQNjoPTQfBaMx6gFcCEsMgyVimtK1bzFblbfKc4fh_yb2Y3HuKQTxqslZI5q6oyhQtl45hS9MFMMYeIR4NgTj2ZpSeTezKnngzPGrZoUmaHLx__OP8r-gGZ_Wja</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1977616175</pqid></control><display><type>article</type><title>Optimal difference-based estimation for partially linear models</title><source>SpringerLink Journals - AutoHoldings</source><creator>Zhou, Yuejin ; Cheng, Yebin ; Dai, Wenlin ; Tong, Tiejun</creator><creatorcontrib>Zhou, Yuejin ; Cheng, Yebin ; Dai, Wenlin ; Tong, Tiejun</creatorcontrib><description>Difference-based methods have attracted increasing attention for analyzing partially linear models in the recent literature. In this paper, we first propose to solve the optimal sequence selection problem in difference-based estimation for the linear component. To achieve the goal, a family of new sequences and a cross-validation method for selecting the adaptive sequence are proposed. We demonstrate that the existing sequences are only extreme cases in the proposed family. Secondly, we propose a new estimator for the residual variance by fitting a linear regression method to some difference-based estimators. Our proposed estimator achieves the asymptotic optimal rate of mean squared error. Simulation studies also demonstrate that our proposed estimator performs better than the existing estimator, especially when the sample size is small and the nonparametric function is rough.</description><identifier>ISSN: 0943-4062</identifier><identifier>EISSN: 1613-9658</identifier><identifier>DOI: 10.1007/s00180-017-0786-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Asymptotic methods ; Computer simulation ; Economic Theory/Quantitative Economics/Mathematical Methods ; Error analysis ; Estimating techniques ; Mathematics and Statistics ; Original Paper ; Probability and Statistics in Computer Science ; Probability Theory and Stochastic Processes ; Regression analysis ; Statistics</subject><ispartof>Computational statistics, 2018-06, Vol.33 (2), p.863-885</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2017</rights><rights>Computational Statistics is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-458417cbdb0811719c2c8cb327b1080d30d8f439823f0b40244c1219c57885293</citedby><cites>FETCH-LOGICAL-c316t-458417cbdb0811719c2c8cb327b1080d30d8f439823f0b40244c1219c57885293</cites><orcidid>0000-0002-0057-793X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00180-017-0786-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00180-017-0786-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Zhou, Yuejin</creatorcontrib><creatorcontrib>Cheng, Yebin</creatorcontrib><creatorcontrib>Dai, Wenlin</creatorcontrib><creatorcontrib>Tong, Tiejun</creatorcontrib><title>Optimal difference-based estimation for partially linear models</title><title>Computational statistics</title><addtitle>Comput Stat</addtitle><description>Difference-based methods have attracted increasing attention for analyzing partially linear models in the recent literature. In this paper, we first propose to solve the optimal sequence selection problem in difference-based estimation for the linear component. To achieve the goal, a family of new sequences and a cross-validation method for selecting the adaptive sequence are proposed. We demonstrate that the existing sequences are only extreme cases in the proposed family. Secondly, we propose a new estimator for the residual variance by fitting a linear regression method to some difference-based estimators. Our proposed estimator achieves the asymptotic optimal rate of mean squared error. Simulation studies also demonstrate that our proposed estimator performs better than the existing estimator, especially when the sample size is small and the nonparametric function is rough.</description><subject>Asymptotic methods</subject><subject>Computer simulation</subject><subject>Economic Theory/Quantitative Economics/Mathematical Methods</subject><subject>Error analysis</subject><subject>Estimating techniques</subject><subject>Mathematics and Statistics</subject><subject>Original Paper</subject><subject>Probability and Statistics in Computer Science</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Regression analysis</subject><subject>Statistics</subject><issn>0943-4062</issn><issn>1613-9658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kDtPxDAQhC0EEuHgB9BFojbs2o7tVAideEknXQO1lfiBcsolwc4V9-_xKRQ0VFvsN7M7Q8gtwj0CqIcEgBoooKKgtKT8jBQokdNaVvqcFFALTgVIdkmuUtoBMKYYFuRxO83dvulL14Xgox-sp22TvCt9Oi3mbhzKMMZyauLcNX1_LPtu8E0s96PzfbomF6Hpk7_5nSvy-fL8sX6jm-3r-_ppQy1HOVNRaYHKtq4Fjaiwtsxq23KmWgQNjoPTQfBaMx6gFcCEsMgyVimtK1bzFblbfKc4fh_yb2Y3HuKQTxqslZI5q6oyhQtl45hS9MFMMYeIR4NgTj2ZpSeTezKnngzPGrZoUmaHLx__OP8r-gGZ_Wja</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Zhou, Yuejin</creator><creator>Cheng, Yebin</creator><creator>Dai, Wenlin</creator><creator>Tong, Tiejun</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-0057-793X</orcidid></search><sort><creationdate>20180601</creationdate><title>Optimal difference-based estimation for partially linear models</title><author>Zhou, Yuejin ; Cheng, Yebin ; Dai, Wenlin ; Tong, Tiejun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-458417cbdb0811719c2c8cb327b1080d30d8f439823f0b40244c1219c57885293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Asymptotic methods</topic><topic>Computer simulation</topic><topic>Economic Theory/Quantitative Economics/Mathematical Methods</topic><topic>Error analysis</topic><topic>Estimating techniques</topic><topic>Mathematics and Statistics</topic><topic>Original Paper</topic><topic>Probability and Statistics in Computer Science</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Regression analysis</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Yuejin</creatorcontrib><creatorcontrib>Cheng, Yebin</creatorcontrib><creatorcontrib>Dai, Wenlin</creatorcontrib><creatorcontrib>Tong, Tiejun</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Computational statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Yuejin</au><au>Cheng, Yebin</au><au>Dai, Wenlin</au><au>Tong, Tiejun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal difference-based estimation for partially linear models</atitle><jtitle>Computational statistics</jtitle><stitle>Comput Stat</stitle><date>2018-06-01</date><risdate>2018</risdate><volume>33</volume><issue>2</issue><spage>863</spage><epage>885</epage><pages>863-885</pages><issn>0943-4062</issn><eissn>1613-9658</eissn><abstract>Difference-based methods have attracted increasing attention for analyzing partially linear models in the recent literature. In this paper, we first propose to solve the optimal sequence selection problem in difference-based estimation for the linear component. To achieve the goal, a family of new sequences and a cross-validation method for selecting the adaptive sequence are proposed. We demonstrate that the existing sequences are only extreme cases in the proposed family. Secondly, we propose a new estimator for the residual variance by fitting a linear regression method to some difference-based estimators. Our proposed estimator achieves the asymptotic optimal rate of mean squared error. Simulation studies also demonstrate that our proposed estimator performs better than the existing estimator, especially when the sample size is small and the nonparametric function is rough.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00180-017-0786-3</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-0057-793X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0943-4062
ispartof Computational statistics, 2018-06, Vol.33 (2), p.863-885
issn 0943-4062
1613-9658
language eng
recordid cdi_proquest_journals_1977616175
source SpringerLink Journals - AutoHoldings
subjects Asymptotic methods
Computer simulation
Economic Theory/Quantitative Economics/Mathematical Methods
Error analysis
Estimating techniques
Mathematics and Statistics
Original Paper
Probability and Statistics in Computer Science
Probability Theory and Stochastic Processes
Regression analysis
Statistics
title Optimal difference-based estimation for partially linear models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T13%3A50%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20difference-based%20estimation%20for%20partially%20linear%20models&rft.jtitle=Computational%20statistics&rft.au=Zhou,%20Yuejin&rft.date=2018-06-01&rft.volume=33&rft.issue=2&rft.spage=863&rft.epage=885&rft.pages=863-885&rft.issn=0943-4062&rft.eissn=1613-9658&rft_id=info:doi/10.1007/s00180-017-0786-3&rft_dat=%3Cproquest_cross%3E1977616175%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1977616175&rft_id=info:pmid/&rfr_iscdi=true