Converting rubber seed oil into hydrocarbon fuels via supported Pd-catalyst

The one-step hydrotreatment of rubber seed oil to produce hydrocarbon fuels has been carried out via supported Pd-catalyst, and analyzed emphatically some elements affected catalytic cracking process, for example, temperature, hydrogen partial pressure and dosage of catalyst, etc. Through experiment...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of agricultural and biological engineering 2017-11, Vol.10 (6), p.201-209
Hauptverfasser: Yubao, Chen, Yajie, Hao, Yongyan, Zhao, Liming, Zhou, Shunping, Yang, Yanni, Gao, Jiangli, Ma, Junchen, Du, Souliyathai, Dona, Aimin, Zhang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 209
container_issue 6
container_start_page 201
container_title International journal of agricultural and biological engineering
container_volume 10
creator Yubao, Chen
Yajie, Hao
Yongyan, Zhao
Liming, Zhou
Shunping, Yang
Yanni, Gao
Jiangli, Ma
Junchen, Du
Souliyathai, Dona
Aimin, Zhang
description The one-step hydrotreatment of rubber seed oil to produce hydrocarbon fuels has been carried out via supported Pd-catalyst, and analyzed emphatically some elements affected catalytic cracking process, for example, temperature, hydrogen partial pressure and dosage of catalyst, etc. Through experimental research, the author found out the appropriate catalytic cracking conditions as follows: 310°C of reaction temperature, 2 MPa of hydrogen partial pressure, 15 of the ratio of oil to catalyst (m(oil)/m(catalyst)), 100 r/min of stirring speed. Under these conditions, effective component of hydrocarbon fuels in the converted oil accounts for 99.49%, and the proportion of C8-C16 can reach as high as 79.61%. The converted oil was similar to petroleum-based oil in chemical composition, and can be used for future the aviation biofuels development as the source of raw material because it contains a large amount of hydrocarbon in the range of C8-C16.
doi_str_mv 10.25165/j.ijabe.20171006.2742
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1977511906</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1977511906</sourcerecordid><originalsourceid>FETCH-LOGICAL-c283t-38355a497bb4201fd0559ff34d5ddb5a949ff11ec9b4927892427464815bc6c73</originalsourceid><addsrcrecordid>eNo9kNtKxDAQhoMouK6-ggS8bs2x2VzK4gkX9EKvQ07VltrUJF3YtzfuqlczAx_zz3wAXGJUE44bft3XXa-NrwnCAiPU1EQwcgQWWFJWNZST4_-esVNwllJfKLaifAGe1mHc-pi78R3G2RgfYfLewdANsBtzgB87F4PV0YQRtrMfEtx2GqZ5mkLMBXxxldVZD7uUz8FJq4fkL37rErzd3b6uH6rN8_3j-mZTWbKiuaIlmGsmhTGsnNw6xLlsW8ocd85wLVmZMPZWGiaJWEnCykPlXsyNbaygS3B12DvF8DX7lFUf5jiWSIWlEBxjiZpCNQfKxpBS9K2aYvep405hpPbiVK_24tSfOPUjjn4Dj2Nigg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1977511906</pqid></control><display><type>article</type><title>Converting rubber seed oil into hydrocarbon fuels via supported Pd-catalyst</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Yubao, Chen ; Yajie, Hao ; Yongyan, Zhao ; Liming, Zhou ; Shunping, Yang ; Yanni, Gao ; Jiangli, Ma ; Junchen, Du ; Souliyathai, Dona ; Aimin, Zhang</creator><creatorcontrib>Yubao, Chen ; Yajie, Hao ; Yongyan, Zhao ; Liming, Zhou ; Shunping, Yang ; Yanni, Gao ; Jiangli, Ma ; Junchen, Du ; Souliyathai, Dona ; Aimin, Zhang ; 1. The China-Laos Joint Lab for Renewable Energy Utilization and Cooperative Development, Yunnan Normal University, Kunming 650500, Yunnan, China ; 2. Kunming Institute of Precious Metals, Kunming 650106, Yunnan, China</creatorcontrib><description>The one-step hydrotreatment of rubber seed oil to produce hydrocarbon fuels has been carried out via supported Pd-catalyst, and analyzed emphatically some elements affected catalytic cracking process, for example, temperature, hydrogen partial pressure and dosage of catalyst, etc. Through experimental research, the author found out the appropriate catalytic cracking conditions as follows: 310°C of reaction temperature, 2 MPa of hydrogen partial pressure, 15 of the ratio of oil to catalyst (m(oil)/m(catalyst)), 100 r/min of stirring speed. Under these conditions, effective component of hydrocarbon fuels in the converted oil accounts for 99.49%, and the proportion of C8-C16 can reach as high as 79.61%. The converted oil was similar to petroleum-based oil in chemical composition, and can be used for future the aviation biofuels development as the source of raw material because it contains a large amount of hydrocarbon in the range of C8-C16.</description><identifier>ISSN: 1934-6344</identifier><identifier>EISSN: 1934-6352</identifier><identifier>DOI: 10.25165/j.ijabe.20171006.2742</identifier><language>eng</language><publisher>Beijing: International Journal of Agricultural and Biological Engineering (IJABE)</publisher><subject>Alternative energy sources ; Aviation ; Biodiesel fuels ; Biofuels ; Biomass ; Catalysts ; Catalytic cracking ; Cracking (chemical engineering) ; Diesel fuels ; Experimental research ; Fatty acids ; Fossil fuels ; Fuels ; Hevea brasiliensis ; Hydrocarbon fuels ; Hydrocarbons ; Hydrogen ; Nickel ; Oil ; Oilseeds ; Partial pressure ; Pressure ; Raw materials ; Renewable resources ; Researchers ; Rubber ; Seeds ; Studies ; Temperature ; Trees ; Triglycerides ; Vegetable oils</subject><ispartof>International journal of agricultural and biological engineering, 2017-11, Vol.10 (6), p.201-209</ispartof><rights>Copyright International Journal of Agricultural and Biological Engineering (IJABE) Nov 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c283t-38355a497bb4201fd0559ff34d5ddb5a949ff11ec9b4927892427464815bc6c73</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>Yubao, Chen</creatorcontrib><creatorcontrib>Yajie, Hao</creatorcontrib><creatorcontrib>Yongyan, Zhao</creatorcontrib><creatorcontrib>Liming, Zhou</creatorcontrib><creatorcontrib>Shunping, Yang</creatorcontrib><creatorcontrib>Yanni, Gao</creatorcontrib><creatorcontrib>Jiangli, Ma</creatorcontrib><creatorcontrib>Junchen, Du</creatorcontrib><creatorcontrib>Souliyathai, Dona</creatorcontrib><creatorcontrib>Aimin, Zhang</creatorcontrib><creatorcontrib>1. The China-Laos Joint Lab for Renewable Energy Utilization and Cooperative Development, Yunnan Normal University, Kunming 650500, Yunnan, China</creatorcontrib><creatorcontrib>2. Kunming Institute of Precious Metals, Kunming 650106, Yunnan, China</creatorcontrib><title>Converting rubber seed oil into hydrocarbon fuels via supported Pd-catalyst</title><title>International journal of agricultural and biological engineering</title><description>The one-step hydrotreatment of rubber seed oil to produce hydrocarbon fuels has been carried out via supported Pd-catalyst, and analyzed emphatically some elements affected catalytic cracking process, for example, temperature, hydrogen partial pressure and dosage of catalyst, etc. Through experimental research, the author found out the appropriate catalytic cracking conditions as follows: 310°C of reaction temperature, 2 MPa of hydrogen partial pressure, 15 of the ratio of oil to catalyst (m(oil)/m(catalyst)), 100 r/min of stirring speed. Under these conditions, effective component of hydrocarbon fuels in the converted oil accounts for 99.49%, and the proportion of C8-C16 can reach as high as 79.61%. The converted oil was similar to petroleum-based oil in chemical composition, and can be used for future the aviation biofuels development as the source of raw material because it contains a large amount of hydrocarbon in the range of C8-C16.</description><subject>Alternative energy sources</subject><subject>Aviation</subject><subject>Biodiesel fuels</subject><subject>Biofuels</subject><subject>Biomass</subject><subject>Catalysts</subject><subject>Catalytic cracking</subject><subject>Cracking (chemical engineering)</subject><subject>Diesel fuels</subject><subject>Experimental research</subject><subject>Fatty acids</subject><subject>Fossil fuels</subject><subject>Fuels</subject><subject>Hevea brasiliensis</subject><subject>Hydrocarbon fuels</subject><subject>Hydrocarbons</subject><subject>Hydrogen</subject><subject>Nickel</subject><subject>Oil</subject><subject>Oilseeds</subject><subject>Partial pressure</subject><subject>Pressure</subject><subject>Raw materials</subject><subject>Renewable resources</subject><subject>Researchers</subject><subject>Rubber</subject><subject>Seeds</subject><subject>Studies</subject><subject>Temperature</subject><subject>Trees</subject><subject>Triglycerides</subject><subject>Vegetable oils</subject><issn>1934-6344</issn><issn>1934-6352</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNo9kNtKxDAQhoMouK6-ggS8bs2x2VzK4gkX9EKvQ07VltrUJF3YtzfuqlczAx_zz3wAXGJUE44bft3XXa-NrwnCAiPU1EQwcgQWWFJWNZST4_-esVNwllJfKLaifAGe1mHc-pi78R3G2RgfYfLewdANsBtzgB87F4PV0YQRtrMfEtx2GqZ5mkLMBXxxldVZD7uUz8FJq4fkL37rErzd3b6uH6rN8_3j-mZTWbKiuaIlmGsmhTGsnNw6xLlsW8ocd85wLVmZMPZWGiaJWEnCykPlXsyNbaygS3B12DvF8DX7lFUf5jiWSIWlEBxjiZpCNQfKxpBS9K2aYvep405hpPbiVK_24tSfOPUjjn4Dj2Nigg</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>Yubao, Chen</creator><creator>Yajie, Hao</creator><creator>Yongyan, Zhao</creator><creator>Liming, Zhou</creator><creator>Shunping, Yang</creator><creator>Yanni, Gao</creator><creator>Jiangli, Ma</creator><creator>Junchen, Du</creator><creator>Souliyathai, Dona</creator><creator>Aimin, Zhang</creator><general>International Journal of Agricultural and Biological Engineering (IJABE)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7SN</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BVBZV</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>RC3</scope><scope>SOI</scope></search><sort><creationdate>20171101</creationdate><title>Converting rubber seed oil into hydrocarbon fuels via supported Pd-catalyst</title><author>Yubao, Chen ; Yajie, Hao ; Yongyan, Zhao ; Liming, Zhou ; Shunping, Yang ; Yanni, Gao ; Jiangli, Ma ; Junchen, Du ; Souliyathai, Dona ; Aimin, Zhang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c283t-38355a497bb4201fd0559ff34d5ddb5a949ff11ec9b4927892427464815bc6c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Alternative energy sources</topic><topic>Aviation</topic><topic>Biodiesel fuels</topic><topic>Biofuels</topic><topic>Biomass</topic><topic>Catalysts</topic><topic>Catalytic cracking</topic><topic>Cracking (chemical engineering)</topic><topic>Diesel fuels</topic><topic>Experimental research</topic><topic>Fatty acids</topic><topic>Fossil fuels</topic><topic>Fuels</topic><topic>Hevea brasiliensis</topic><topic>Hydrocarbon fuels</topic><topic>Hydrocarbons</topic><topic>Hydrogen</topic><topic>Nickel</topic><topic>Oil</topic><topic>Oilseeds</topic><topic>Partial pressure</topic><topic>Pressure</topic><topic>Raw materials</topic><topic>Renewable resources</topic><topic>Researchers</topic><topic>Rubber</topic><topic>Seeds</topic><topic>Studies</topic><topic>Temperature</topic><topic>Trees</topic><topic>Triglycerides</topic><topic>Vegetable oils</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yubao, Chen</creatorcontrib><creatorcontrib>Yajie, Hao</creatorcontrib><creatorcontrib>Yongyan, Zhao</creatorcontrib><creatorcontrib>Liming, Zhou</creatorcontrib><creatorcontrib>Shunping, Yang</creatorcontrib><creatorcontrib>Yanni, Gao</creatorcontrib><creatorcontrib>Jiangli, Ma</creatorcontrib><creatorcontrib>Junchen, Du</creatorcontrib><creatorcontrib>Souliyathai, Dona</creatorcontrib><creatorcontrib>Aimin, Zhang</creatorcontrib><creatorcontrib>1. The China-Laos Joint Lab for Renewable Energy Utilization and Cooperative Development, Yunnan Normal University, Kunming 650500, Yunnan, China</creatorcontrib><creatorcontrib>2. Kunming Institute of Precious Metals, Kunming 650106, Yunnan, China</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>East &amp; South Asia Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><jtitle>International journal of agricultural and biological engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yubao, Chen</au><au>Yajie, Hao</au><au>Yongyan, Zhao</au><au>Liming, Zhou</au><au>Shunping, Yang</au><au>Yanni, Gao</au><au>Jiangli, Ma</au><au>Junchen, Du</au><au>Souliyathai, Dona</au><au>Aimin, Zhang</au><aucorp>1. The China-Laos Joint Lab for Renewable Energy Utilization and Cooperative Development, Yunnan Normal University, Kunming 650500, Yunnan, China</aucorp><aucorp>2. Kunming Institute of Precious Metals, Kunming 650106, Yunnan, China</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Converting rubber seed oil into hydrocarbon fuels via supported Pd-catalyst</atitle><jtitle>International journal of agricultural and biological engineering</jtitle><date>2017-11-01</date><risdate>2017</risdate><volume>10</volume><issue>6</issue><spage>201</spage><epage>209</epage><pages>201-209</pages><issn>1934-6344</issn><eissn>1934-6352</eissn><abstract>The one-step hydrotreatment of rubber seed oil to produce hydrocarbon fuels has been carried out via supported Pd-catalyst, and analyzed emphatically some elements affected catalytic cracking process, for example, temperature, hydrogen partial pressure and dosage of catalyst, etc. Through experimental research, the author found out the appropriate catalytic cracking conditions as follows: 310°C of reaction temperature, 2 MPa of hydrogen partial pressure, 15 of the ratio of oil to catalyst (m(oil)/m(catalyst)), 100 r/min of stirring speed. Under these conditions, effective component of hydrocarbon fuels in the converted oil accounts for 99.49%, and the proportion of C8-C16 can reach as high as 79.61%. The converted oil was similar to petroleum-based oil in chemical composition, and can be used for future the aviation biofuels development as the source of raw material because it contains a large amount of hydrocarbon in the range of C8-C16.</abstract><cop>Beijing</cop><pub>International Journal of Agricultural and Biological Engineering (IJABE)</pub><doi>10.25165/j.ijabe.20171006.2742</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1934-6344
ispartof International journal of agricultural and biological engineering, 2017-11, Vol.10 (6), p.201-209
issn 1934-6344
1934-6352
language eng
recordid cdi_proquest_journals_1977511906
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Alternative energy sources
Aviation
Biodiesel fuels
Biofuels
Biomass
Catalysts
Catalytic cracking
Cracking (chemical engineering)
Diesel fuels
Experimental research
Fatty acids
Fossil fuels
Fuels
Hevea brasiliensis
Hydrocarbon fuels
Hydrocarbons
Hydrogen
Nickel
Oil
Oilseeds
Partial pressure
Pressure
Raw materials
Renewable resources
Researchers
Rubber
Seeds
Studies
Temperature
Trees
Triglycerides
Vegetable oils
title Converting rubber seed oil into hydrocarbon fuels via supported Pd-catalyst
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T04%3A27%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Converting%20rubber%20seed%20oil%20into%20hydrocarbon%20fuels%20via%20supported%20Pd-catalyst&rft.jtitle=International%20journal%20of%20agricultural%20and%20biological%20engineering&rft.au=Yubao,%20Chen&rft.aucorp=1.%20The%20China-Laos%20Joint%20Lab%20for%20Renewable%20Energy%20Utilization%20and%20Cooperative%20Development,%20Yunnan%20Normal%20University,%20Kunming%20650500,%20Yunnan,%20China&rft.date=2017-11-01&rft.volume=10&rft.issue=6&rft.spage=201&rft.epage=209&rft.pages=201-209&rft.issn=1934-6344&rft.eissn=1934-6352&rft_id=info:doi/10.25165/j.ijabe.20171006.2742&rft_dat=%3Cproquest_cross%3E1977511906%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1977511906&rft_id=info:pmid/&rfr_iscdi=true