Converting rubber seed oil into hydrocarbon fuels via supported Pd-catalyst
The one-step hydrotreatment of rubber seed oil to produce hydrocarbon fuels has been carried out via supported Pd-catalyst, and analyzed emphatically some elements affected catalytic cracking process, for example, temperature, hydrogen partial pressure and dosage of catalyst, etc. Through experiment...
Gespeichert in:
Veröffentlicht in: | International journal of agricultural and biological engineering 2017-11, Vol.10 (6), p.201-209 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 209 |
---|---|
container_issue | 6 |
container_start_page | 201 |
container_title | International journal of agricultural and biological engineering |
container_volume | 10 |
creator | Yubao, Chen Yajie, Hao Yongyan, Zhao Liming, Zhou Shunping, Yang Yanni, Gao Jiangli, Ma Junchen, Du Souliyathai, Dona Aimin, Zhang |
description | The one-step hydrotreatment of rubber seed oil to produce hydrocarbon fuels has been carried out via supported Pd-catalyst, and analyzed emphatically some elements affected catalytic cracking process, for example, temperature, hydrogen partial pressure and dosage of catalyst, etc. Through experimental research, the author found out the appropriate catalytic cracking conditions as follows: 310°C of reaction temperature, 2 MPa of hydrogen partial pressure, 15 of the ratio of oil to catalyst (m(oil)/m(catalyst)), 100 r/min of stirring speed. Under these conditions, effective component of hydrocarbon fuels in the converted oil accounts for 99.49%, and the proportion of C8-C16 can reach as high as 79.61%. The converted oil was similar to petroleum-based oil in chemical composition, and can be used for future the aviation biofuels development as the source of raw material because it contains a large amount of hydrocarbon in the range of C8-C16. |
doi_str_mv | 10.25165/j.ijabe.20171006.2742 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1977511906</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1977511906</sourcerecordid><originalsourceid>FETCH-LOGICAL-c283t-38355a497bb4201fd0559ff34d5ddb5a949ff11ec9b4927892427464815bc6c73</originalsourceid><addsrcrecordid>eNo9kNtKxDAQhoMouK6-ggS8bs2x2VzK4gkX9EKvQ07VltrUJF3YtzfuqlczAx_zz3wAXGJUE44bft3XXa-NrwnCAiPU1EQwcgQWWFJWNZST4_-esVNwllJfKLaifAGe1mHc-pi78R3G2RgfYfLewdANsBtzgB87F4PV0YQRtrMfEtx2GqZ5mkLMBXxxldVZD7uUz8FJq4fkL37rErzd3b6uH6rN8_3j-mZTWbKiuaIlmGsmhTGsnNw6xLlsW8ocd85wLVmZMPZWGiaJWEnCykPlXsyNbaygS3B12DvF8DX7lFUf5jiWSIWlEBxjiZpCNQfKxpBS9K2aYvep405hpPbiVK_24tSfOPUjjn4Dj2Nigg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1977511906</pqid></control><display><type>article</type><title>Converting rubber seed oil into hydrocarbon fuels via supported Pd-catalyst</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Yubao, Chen ; Yajie, Hao ; Yongyan, Zhao ; Liming, Zhou ; Shunping, Yang ; Yanni, Gao ; Jiangli, Ma ; Junchen, Du ; Souliyathai, Dona ; Aimin, Zhang</creator><creatorcontrib>Yubao, Chen ; Yajie, Hao ; Yongyan, Zhao ; Liming, Zhou ; Shunping, Yang ; Yanni, Gao ; Jiangli, Ma ; Junchen, Du ; Souliyathai, Dona ; Aimin, Zhang ; 1. The China-Laos Joint Lab for Renewable Energy Utilization and Cooperative Development, Yunnan Normal University, Kunming 650500, Yunnan, China ; 2. Kunming Institute of Precious Metals, Kunming 650106, Yunnan, China</creatorcontrib><description>The one-step hydrotreatment of rubber seed oil to produce hydrocarbon fuels has been carried out via supported Pd-catalyst, and analyzed emphatically some elements affected catalytic cracking process, for example, temperature, hydrogen partial pressure and dosage of catalyst, etc. Through experimental research, the author found out the appropriate catalytic cracking conditions as follows: 310°C of reaction temperature, 2 MPa of hydrogen partial pressure, 15 of the ratio of oil to catalyst (m(oil)/m(catalyst)), 100 r/min of stirring speed. Under these conditions, effective component of hydrocarbon fuels in the converted oil accounts for 99.49%, and the proportion of C8-C16 can reach as high as 79.61%. The converted oil was similar to petroleum-based oil in chemical composition, and can be used for future the aviation biofuels development as the source of raw material because it contains a large amount of hydrocarbon in the range of C8-C16.</description><identifier>ISSN: 1934-6344</identifier><identifier>EISSN: 1934-6352</identifier><identifier>DOI: 10.25165/j.ijabe.20171006.2742</identifier><language>eng</language><publisher>Beijing: International Journal of Agricultural and Biological Engineering (IJABE)</publisher><subject>Alternative energy sources ; Aviation ; Biodiesel fuels ; Biofuels ; Biomass ; Catalysts ; Catalytic cracking ; Cracking (chemical engineering) ; Diesel fuels ; Experimental research ; Fatty acids ; Fossil fuels ; Fuels ; Hevea brasiliensis ; Hydrocarbon fuels ; Hydrocarbons ; Hydrogen ; Nickel ; Oil ; Oilseeds ; Partial pressure ; Pressure ; Raw materials ; Renewable resources ; Researchers ; Rubber ; Seeds ; Studies ; Temperature ; Trees ; Triglycerides ; Vegetable oils</subject><ispartof>International journal of agricultural and biological engineering, 2017-11, Vol.10 (6), p.201-209</ispartof><rights>Copyright International Journal of Agricultural and Biological Engineering (IJABE) Nov 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c283t-38355a497bb4201fd0559ff34d5ddb5a949ff11ec9b4927892427464815bc6c73</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>Yubao, Chen</creatorcontrib><creatorcontrib>Yajie, Hao</creatorcontrib><creatorcontrib>Yongyan, Zhao</creatorcontrib><creatorcontrib>Liming, Zhou</creatorcontrib><creatorcontrib>Shunping, Yang</creatorcontrib><creatorcontrib>Yanni, Gao</creatorcontrib><creatorcontrib>Jiangli, Ma</creatorcontrib><creatorcontrib>Junchen, Du</creatorcontrib><creatorcontrib>Souliyathai, Dona</creatorcontrib><creatorcontrib>Aimin, Zhang</creatorcontrib><creatorcontrib>1. The China-Laos Joint Lab for Renewable Energy Utilization and Cooperative Development, Yunnan Normal University, Kunming 650500, Yunnan, China</creatorcontrib><creatorcontrib>2. Kunming Institute of Precious Metals, Kunming 650106, Yunnan, China</creatorcontrib><title>Converting rubber seed oil into hydrocarbon fuels via supported Pd-catalyst</title><title>International journal of agricultural and biological engineering</title><description>The one-step hydrotreatment of rubber seed oil to produce hydrocarbon fuels has been carried out via supported Pd-catalyst, and analyzed emphatically some elements affected catalytic cracking process, for example, temperature, hydrogen partial pressure and dosage of catalyst, etc. Through experimental research, the author found out the appropriate catalytic cracking conditions as follows: 310°C of reaction temperature, 2 MPa of hydrogen partial pressure, 15 of the ratio of oil to catalyst (m(oil)/m(catalyst)), 100 r/min of stirring speed. Under these conditions, effective component of hydrocarbon fuels in the converted oil accounts for 99.49%, and the proportion of C8-C16 can reach as high as 79.61%. The converted oil was similar to petroleum-based oil in chemical composition, and can be used for future the aviation biofuels development as the source of raw material because it contains a large amount of hydrocarbon in the range of C8-C16.</description><subject>Alternative energy sources</subject><subject>Aviation</subject><subject>Biodiesel fuels</subject><subject>Biofuels</subject><subject>Biomass</subject><subject>Catalysts</subject><subject>Catalytic cracking</subject><subject>Cracking (chemical engineering)</subject><subject>Diesel fuels</subject><subject>Experimental research</subject><subject>Fatty acids</subject><subject>Fossil fuels</subject><subject>Fuels</subject><subject>Hevea brasiliensis</subject><subject>Hydrocarbon fuels</subject><subject>Hydrocarbons</subject><subject>Hydrogen</subject><subject>Nickel</subject><subject>Oil</subject><subject>Oilseeds</subject><subject>Partial pressure</subject><subject>Pressure</subject><subject>Raw materials</subject><subject>Renewable resources</subject><subject>Researchers</subject><subject>Rubber</subject><subject>Seeds</subject><subject>Studies</subject><subject>Temperature</subject><subject>Trees</subject><subject>Triglycerides</subject><subject>Vegetable oils</subject><issn>1934-6344</issn><issn>1934-6352</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNo9kNtKxDAQhoMouK6-ggS8bs2x2VzK4gkX9EKvQ07VltrUJF3YtzfuqlczAx_zz3wAXGJUE44bft3XXa-NrwnCAiPU1EQwcgQWWFJWNZST4_-esVNwllJfKLaifAGe1mHc-pi78R3G2RgfYfLewdANsBtzgB87F4PV0YQRtrMfEtx2GqZ5mkLMBXxxldVZD7uUz8FJq4fkL37rErzd3b6uH6rN8_3j-mZTWbKiuaIlmGsmhTGsnNw6xLlsW8ocd85wLVmZMPZWGiaJWEnCykPlXsyNbaygS3B12DvF8DX7lFUf5jiWSIWlEBxjiZpCNQfKxpBS9K2aYvep405hpPbiVK_24tSfOPUjjn4Dj2Nigg</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>Yubao, Chen</creator><creator>Yajie, Hao</creator><creator>Yongyan, Zhao</creator><creator>Liming, Zhou</creator><creator>Shunping, Yang</creator><creator>Yanni, Gao</creator><creator>Jiangli, Ma</creator><creator>Junchen, Du</creator><creator>Souliyathai, Dona</creator><creator>Aimin, Zhang</creator><general>International Journal of Agricultural and Biological Engineering (IJABE)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7SN</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BVBZV</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>RC3</scope><scope>SOI</scope></search><sort><creationdate>20171101</creationdate><title>Converting rubber seed oil into hydrocarbon fuels via supported Pd-catalyst</title><author>Yubao, Chen ; Yajie, Hao ; Yongyan, Zhao ; Liming, Zhou ; Shunping, Yang ; Yanni, Gao ; Jiangli, Ma ; Junchen, Du ; Souliyathai, Dona ; Aimin, Zhang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c283t-38355a497bb4201fd0559ff34d5ddb5a949ff11ec9b4927892427464815bc6c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Alternative energy sources</topic><topic>Aviation</topic><topic>Biodiesel fuels</topic><topic>Biofuels</topic><topic>Biomass</topic><topic>Catalysts</topic><topic>Catalytic cracking</topic><topic>Cracking (chemical engineering)</topic><topic>Diesel fuels</topic><topic>Experimental research</topic><topic>Fatty acids</topic><topic>Fossil fuels</topic><topic>Fuels</topic><topic>Hevea brasiliensis</topic><topic>Hydrocarbon fuels</topic><topic>Hydrocarbons</topic><topic>Hydrogen</topic><topic>Nickel</topic><topic>Oil</topic><topic>Oilseeds</topic><topic>Partial pressure</topic><topic>Pressure</topic><topic>Raw materials</topic><topic>Renewable resources</topic><topic>Researchers</topic><topic>Rubber</topic><topic>Seeds</topic><topic>Studies</topic><topic>Temperature</topic><topic>Trees</topic><topic>Triglycerides</topic><topic>Vegetable oils</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yubao, Chen</creatorcontrib><creatorcontrib>Yajie, Hao</creatorcontrib><creatorcontrib>Yongyan, Zhao</creatorcontrib><creatorcontrib>Liming, Zhou</creatorcontrib><creatorcontrib>Shunping, Yang</creatorcontrib><creatorcontrib>Yanni, Gao</creatorcontrib><creatorcontrib>Jiangli, Ma</creatorcontrib><creatorcontrib>Junchen, Du</creatorcontrib><creatorcontrib>Souliyathai, Dona</creatorcontrib><creatorcontrib>Aimin, Zhang</creatorcontrib><creatorcontrib>1. The China-Laos Joint Lab for Renewable Energy Utilization and Cooperative Development, Yunnan Normal University, Kunming 650500, Yunnan, China</creatorcontrib><creatorcontrib>2. Kunming Institute of Precious Metals, Kunming 650106, Yunnan, China</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>East & South Asia Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><jtitle>International journal of agricultural and biological engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yubao, Chen</au><au>Yajie, Hao</au><au>Yongyan, Zhao</au><au>Liming, Zhou</au><au>Shunping, Yang</au><au>Yanni, Gao</au><au>Jiangli, Ma</au><au>Junchen, Du</au><au>Souliyathai, Dona</au><au>Aimin, Zhang</au><aucorp>1. The China-Laos Joint Lab for Renewable Energy Utilization and Cooperative Development, Yunnan Normal University, Kunming 650500, Yunnan, China</aucorp><aucorp>2. Kunming Institute of Precious Metals, Kunming 650106, Yunnan, China</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Converting rubber seed oil into hydrocarbon fuels via supported Pd-catalyst</atitle><jtitle>International journal of agricultural and biological engineering</jtitle><date>2017-11-01</date><risdate>2017</risdate><volume>10</volume><issue>6</issue><spage>201</spage><epage>209</epage><pages>201-209</pages><issn>1934-6344</issn><eissn>1934-6352</eissn><abstract>The one-step hydrotreatment of rubber seed oil to produce hydrocarbon fuels has been carried out via supported Pd-catalyst, and analyzed emphatically some elements affected catalytic cracking process, for example, temperature, hydrogen partial pressure and dosage of catalyst, etc. Through experimental research, the author found out the appropriate catalytic cracking conditions as follows: 310°C of reaction temperature, 2 MPa of hydrogen partial pressure, 15 of the ratio of oil to catalyst (m(oil)/m(catalyst)), 100 r/min of stirring speed. Under these conditions, effective component of hydrocarbon fuels in the converted oil accounts for 99.49%, and the proportion of C8-C16 can reach as high as 79.61%. The converted oil was similar to petroleum-based oil in chemical composition, and can be used for future the aviation biofuels development as the source of raw material because it contains a large amount of hydrocarbon in the range of C8-C16.</abstract><cop>Beijing</cop><pub>International Journal of Agricultural and Biological Engineering (IJABE)</pub><doi>10.25165/j.ijabe.20171006.2742</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1934-6344 |
ispartof | International journal of agricultural and biological engineering, 2017-11, Vol.10 (6), p.201-209 |
issn | 1934-6344 1934-6352 |
language | eng |
recordid | cdi_proquest_journals_1977511906 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Alternative energy sources Aviation Biodiesel fuels Biofuels Biomass Catalysts Catalytic cracking Cracking (chemical engineering) Diesel fuels Experimental research Fatty acids Fossil fuels Fuels Hevea brasiliensis Hydrocarbon fuels Hydrocarbons Hydrogen Nickel Oil Oilseeds Partial pressure Pressure Raw materials Renewable resources Researchers Rubber Seeds Studies Temperature Trees Triglycerides Vegetable oils |
title | Converting rubber seed oil into hydrocarbon fuels via supported Pd-catalyst |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T04%3A27%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Converting%20rubber%20seed%20oil%20into%20hydrocarbon%20fuels%20via%20supported%20Pd-catalyst&rft.jtitle=International%20journal%20of%20agricultural%20and%20biological%20engineering&rft.au=Yubao,%20Chen&rft.aucorp=1.%20The%20China-Laos%20Joint%20Lab%20for%20Renewable%20Energy%20Utilization%20and%20Cooperative%20Development,%20Yunnan%20Normal%20University,%20Kunming%20650500,%20Yunnan,%20China&rft.date=2017-11-01&rft.volume=10&rft.issue=6&rft.spage=201&rft.epage=209&rft.pages=201-209&rft.issn=1934-6344&rft.eissn=1934-6352&rft_id=info:doi/10.25165/j.ijabe.20171006.2742&rft_dat=%3Cproquest_cross%3E1977511906%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1977511906&rft_id=info:pmid/&rfr_iscdi=true |