The max-INAR(1) model for count processes
This paper proposes a discrete counterpart of the conventional max-autoregressive process of order one. It is based on the so-called binomial thinning operator and driven by a sequence of independent and identically distributed nonnegative integer-valued random variables with either regularly varyin...
Gespeichert in:
Veröffentlicht in: | Test (Madrid, Spain) Spain), 2018-12, Vol.27 (4), p.850-870 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 870 |
---|---|
container_issue | 4 |
container_start_page | 850 |
container_title | Test (Madrid, Spain) |
container_volume | 27 |
creator | Scotto, Manuel G. Weiß, Christian H. Möller, Tobias A. Gouveia, Sónia |
description | This paper proposes a discrete counterpart of the conventional max-autoregressive process of order one. It is based on the so-called binomial thinning operator and driven by a sequence of independent and identically distributed nonnegative integer-valued random variables with either regularly varying right tail or exponential-type right tail. Basic probabilistic and statistical properties of the process are discussed in detail, including the analysis of conditional moments, transition probabilities, the existence and uniqueness of a stationary distribution, and the relationship between the observations’ and innovations’ distribution. We also provide conditions on the marginal distribution of the process to ensure that the innovations’ distribution exists and is well defined. Several examples of families of distributions satisfying such conditions are presented, but also some counterexamples are analyzed. Furthermore, the analysis of its extremal behavior is also considered. In particular, we look at the limiting distribution of sample maxima and its corresponding extremal index. |
doi_str_mv | 10.1007/s11749-017-0573-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1977502382</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1977502382</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-5ae992de14df554a706f366e2f40435360d07a2df0bc273da613c43d496f6a2d3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wNuCF3uIziTZye6xFKuFoiD1HOImUUvbrckWtL_elPXgxdO8DO8HPIxdItwggL5NiFrVHFBzKLXk-yM2wIokrwTBcdYoJQeq6JSdpbQEIEUCB2y0ePfF2n7x2eP4-RpHxbp1flWENhZNu9t0xTa2jU_Jp3N2Euwq-YvfO2Qv07vF5IHPn-5nk_GcN1LVHS-tr2vhPCoXylJZDRQkkRdBgZKlJHCgrXABXhuhpbOEslHSqZoC5b8csqu-Ny9_7nzqzLLdxU2eNFhrXYKQlcgu7F1NbFOKPpht_Fjb-G0QzIGI6YmYTMQciJh9zog-k7J38-bjn-Z_Qz9SF2EU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1977502382</pqid></control><display><type>article</type><title>The max-INAR(1) model for count processes</title><source>SpringerLink Journals - AutoHoldings</source><creator>Scotto, Manuel G. ; Weiß, Christian H. ; Möller, Tobias A. ; Gouveia, Sónia</creator><creatorcontrib>Scotto, Manuel G. ; Weiß, Christian H. ; Möller, Tobias A. ; Gouveia, Sónia</creatorcontrib><description>This paper proposes a discrete counterpart of the conventional max-autoregressive process of order one. It is based on the so-called binomial thinning operator and driven by a sequence of independent and identically distributed nonnegative integer-valued random variables with either regularly varying right tail or exponential-type right tail. Basic probabilistic and statistical properties of the process are discussed in detail, including the analysis of conditional moments, transition probabilities, the existence and uniqueness of a stationary distribution, and the relationship between the observations’ and innovations’ distribution. We also provide conditions on the marginal distribution of the process to ensure that the innovations’ distribution exists and is well defined. Several examples of families of distributions satisfying such conditions are presented, but also some counterexamples are analyzed. Furthermore, the analysis of its extremal behavior is also considered. In particular, we look at the limiting distribution of sample maxima and its corresponding extremal index.</description><identifier>ISSN: 1133-0686</identifier><identifier>EISSN: 1863-8260</identifier><identifier>DOI: 10.1007/s11749-017-0573-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Autoregressive processes ; Economics ; Finance ; Insurance ; Management ; Mathematics and Statistics ; Maxima ; Original Paper ; Random variables ; Statistical analysis ; Statistical Theory and Methods ; Statistics ; Statistics for Business ; Transition probabilities ; Uniqueness</subject><ispartof>Test (Madrid, Spain), 2018-12, Vol.27 (4), p.850-870</ispartof><rights>Sociedad de Estadística e Investigación Operativa 2017</rights><rights>TEST is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-5ae992de14df554a706f366e2f40435360d07a2df0bc273da613c43d496f6a2d3</citedby><cites>FETCH-LOGICAL-c349t-5ae992de14df554a706f366e2f40435360d07a2df0bc273da613c43d496f6a2d3</cites><orcidid>0000-0001-8427-2684 ; 0000-0001-8739-6631 ; 0000-0002-0375-7610</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11749-017-0573-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11749-017-0573-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Scotto, Manuel G.</creatorcontrib><creatorcontrib>Weiß, Christian H.</creatorcontrib><creatorcontrib>Möller, Tobias A.</creatorcontrib><creatorcontrib>Gouveia, Sónia</creatorcontrib><title>The max-INAR(1) model for count processes</title><title>Test (Madrid, Spain)</title><addtitle>TEST</addtitle><description>This paper proposes a discrete counterpart of the conventional max-autoregressive process of order one. It is based on the so-called binomial thinning operator and driven by a sequence of independent and identically distributed nonnegative integer-valued random variables with either regularly varying right tail or exponential-type right tail. Basic probabilistic and statistical properties of the process are discussed in detail, including the analysis of conditional moments, transition probabilities, the existence and uniqueness of a stationary distribution, and the relationship between the observations’ and innovations’ distribution. We also provide conditions on the marginal distribution of the process to ensure that the innovations’ distribution exists and is well defined. Several examples of families of distributions satisfying such conditions are presented, but also some counterexamples are analyzed. Furthermore, the analysis of its extremal behavior is also considered. In particular, we look at the limiting distribution of sample maxima and its corresponding extremal index.</description><subject>Autoregressive processes</subject><subject>Economics</subject><subject>Finance</subject><subject>Insurance</subject><subject>Management</subject><subject>Mathematics and Statistics</subject><subject>Maxima</subject><subject>Original Paper</subject><subject>Random variables</subject><subject>Statistical analysis</subject><subject>Statistical Theory and Methods</subject><subject>Statistics</subject><subject>Statistics for Business</subject><subject>Transition probabilities</subject><subject>Uniqueness</subject><issn>1133-0686</issn><issn>1863-8260</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kE1LAzEQhoMoWKs_wNuCF3uIziTZye6xFKuFoiD1HOImUUvbrckWtL_elPXgxdO8DO8HPIxdItwggL5NiFrVHFBzKLXk-yM2wIokrwTBcdYoJQeq6JSdpbQEIEUCB2y0ePfF2n7x2eP4-RpHxbp1flWENhZNu9t0xTa2jU_Jp3N2Euwq-YvfO2Qv07vF5IHPn-5nk_GcN1LVHS-tr2vhPCoXylJZDRQkkRdBgZKlJHCgrXABXhuhpbOEslHSqZoC5b8csqu-Ny9_7nzqzLLdxU2eNFhrXYKQlcgu7F1NbFOKPpht_Fjb-G0QzIGI6YmYTMQciJh9zog-k7J38-bjn-Z_Qz9SF2EU</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Scotto, Manuel G.</creator><creator>Weiß, Christian H.</creator><creator>Möller, Tobias A.</creator><creator>Gouveia, Sónia</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88C</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0T</scope><scope>M7S</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-8427-2684</orcidid><orcidid>https://orcid.org/0000-0001-8739-6631</orcidid><orcidid>https://orcid.org/0000-0002-0375-7610</orcidid></search><sort><creationdate>20181201</creationdate><title>The max-INAR(1) model for count processes</title><author>Scotto, Manuel G. ; Weiß, Christian H. ; Möller, Tobias A. ; Gouveia, Sónia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-5ae992de14df554a706f366e2f40435360d07a2df0bc273da613c43d496f6a2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Autoregressive processes</topic><topic>Economics</topic><topic>Finance</topic><topic>Insurance</topic><topic>Management</topic><topic>Mathematics and Statistics</topic><topic>Maxima</topic><topic>Original Paper</topic><topic>Random variables</topic><topic>Statistical analysis</topic><topic>Statistical Theory and Methods</topic><topic>Statistics</topic><topic>Statistics for Business</topic><topic>Transition probabilities</topic><topic>Uniqueness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scotto, Manuel G.</creatorcontrib><creatorcontrib>Weiß, Christian H.</creatorcontrib><creatorcontrib>Möller, Tobias A.</creatorcontrib><creatorcontrib>Gouveia, Sónia</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Healthcare Administration Database</collection><collection>Engineering Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Test (Madrid, Spain)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scotto, Manuel G.</au><au>Weiß, Christian H.</au><au>Möller, Tobias A.</au><au>Gouveia, Sónia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The max-INAR(1) model for count processes</atitle><jtitle>Test (Madrid, Spain)</jtitle><stitle>TEST</stitle><date>2018-12-01</date><risdate>2018</risdate><volume>27</volume><issue>4</issue><spage>850</spage><epage>870</epage><pages>850-870</pages><issn>1133-0686</issn><eissn>1863-8260</eissn><abstract>This paper proposes a discrete counterpart of the conventional max-autoregressive process of order one. It is based on the so-called binomial thinning operator and driven by a sequence of independent and identically distributed nonnegative integer-valued random variables with either regularly varying right tail or exponential-type right tail. Basic probabilistic and statistical properties of the process are discussed in detail, including the analysis of conditional moments, transition probabilities, the existence and uniqueness of a stationary distribution, and the relationship between the observations’ and innovations’ distribution. We also provide conditions on the marginal distribution of the process to ensure that the innovations’ distribution exists and is well defined. Several examples of families of distributions satisfying such conditions are presented, but also some counterexamples are analyzed. Furthermore, the analysis of its extremal behavior is also considered. In particular, we look at the limiting distribution of sample maxima and its corresponding extremal index.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11749-017-0573-z</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0001-8427-2684</orcidid><orcidid>https://orcid.org/0000-0001-8739-6631</orcidid><orcidid>https://orcid.org/0000-0002-0375-7610</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1133-0686 |
ispartof | Test (Madrid, Spain), 2018-12, Vol.27 (4), p.850-870 |
issn | 1133-0686 1863-8260 |
language | eng |
recordid | cdi_proquest_journals_1977502382 |
source | SpringerLink Journals - AutoHoldings |
subjects | Autoregressive processes Economics Finance Insurance Management Mathematics and Statistics Maxima Original Paper Random variables Statistical analysis Statistical Theory and Methods Statistics Statistics for Business Transition probabilities Uniqueness |
title | The max-INAR(1) model for count processes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T04%3A31%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20max-INAR(1)%20model%20for%20count%20processes&rft.jtitle=Test%20(Madrid,%20Spain)&rft.au=Scotto,%20Manuel%20G.&rft.date=2018-12-01&rft.volume=27&rft.issue=4&rft.spage=850&rft.epage=870&rft.pages=850-870&rft.issn=1133-0686&rft.eissn=1863-8260&rft_id=info:doi/10.1007/s11749-017-0573-z&rft_dat=%3Cproquest_cross%3E1977502382%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1977502382&rft_id=info:pmid/&rfr_iscdi=true |