Development of the "GP2" Detector: Modification of the PImMS CMOS Sensor for Energy-Resolved Neutron Radiography
This paper reports on the development and commissioning of the GP2 detector. GP2 was developed to address the requirement for a high-resolution event-mode imaging detector, for application in energy-resolved neutron radiography. The name GP2 derives from the use of gadolinium as a neutron conversion...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on nuclear science 2017-12, Vol.64 (12), p.2970-2981 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2981 |
---|---|
container_issue | 12 |
container_start_page | 2970 |
container_title | IEEE transactions on nuclear science |
container_volume | 64 |
creator | Pooley, D. E. Vallance, C. Lee, J. W. L. Brouard, M. John, J. J. Kockelmann, W. Rhodes, N. J. Schooneveld, E. M. Sedgwick, I. Turchetta, R. |
description | This paper reports on the development and commissioning of the GP2 detector. GP2 was developed to address the requirement for a high-resolution event-mode imaging detector, for application in energy-resolved neutron radiography. The name GP2 derives from the use of gadolinium as a neutron conversion material, combined with a second-generation mass spectrometry sensor known as PImMS2. Theoretical and measured characteristics of GP2 are compared, with emphasis on the usability and functionality of the detector. The development of the detector has been steered by a design philosophy which was established to ensure that the detector has unique and novel impact. The motivation and consequences of the design philosophy are discussed. The key parameters reported are the neutron detection efficiency (7.5% at 2.5 Å), gamma sensitivity (1.5 × 10 -3 ), and a spatial resolution (modulation transfer function at 10%) of 6.4 lp/mm for a 4-μm-thick natural gadolinium neutron converter film. |
doi_str_mv | 10.1109/TNS.2017.2772040 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1977273491</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8103062</ieee_id><sourcerecordid>1977273491</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-c6869b25f90696eb5cd0c5f4a8375f750a7c3b6534f4dc37af9a70ccfd93b57a3</originalsourceid><addsrcrecordid>eNo9kF1rwjAUhsPYYM7tfrCb4K7rkqZpmt0NdU7wC-uuS0xPtKJNl1TBf7-KbheHlwPPew48CD1T0qWUyLflNO2GhIpuKERIInKDWpTzJKBcJLeoRQhNAhlJeY8evN82a8QJb6GqD0fY2WoPZY2twfUGcGc4Dzu4DzXo2rp3PLF5YQqt6sKWf8x8tJ-kuDeZpTiF0luHTTODEtz6FCzA290RcjyFQ-2a0kLlhV07VW1Oj-jOqJ2Hp2u20ffnYNn7Csaz4aj3MQ40Y6wOdJzEchVyI0ksY1hxnRPNTaQSJrgRnCih2SrmLDJRrplQRipBtDa5ZCsuFGuj18vdytmfA_g629qDK5uXGZWNIsEiSRuKXCjtrPcOTFa5Yq_cKaMkO3vNGq_Z2Wt29dpUXi6VAgD-8YQSRuKQ_QKhwHNE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1977273491</pqid></control><display><type>article</type><title>Development of the "GP2" Detector: Modification of the PImMS CMOS Sensor for Energy-Resolved Neutron Radiography</title><source>IEEE Electronic Library (IEL)</source><creator>Pooley, D. E. ; Vallance, C. ; Lee, J. W. L. ; Brouard, M. ; John, J. J. ; Kockelmann, W. ; Rhodes, N. J. ; Schooneveld, E. M. ; Sedgwick, I. ; Turchetta, R.</creator><creatorcontrib>Pooley, D. E. ; Vallance, C. ; Lee, J. W. L. ; Brouard, M. ; John, J. J. ; Kockelmann, W. ; Rhodes, N. J. ; Schooneveld, E. M. ; Sedgwick, I. ; Turchetta, R.</creatorcontrib><description>This paper reports on the development and commissioning of the GP2 detector. GP2 was developed to address the requirement for a high-resolution event-mode imaging detector, for application in energy-resolved neutron radiography. The name GP2 derives from the use of gadolinium as a neutron conversion material, combined with a second-generation mass spectrometry sensor known as PImMS2. Theoretical and measured characteristics of GP2 are compared, with emphasis on the usability and functionality of the detector. The development of the detector has been steered by a design philosophy which was established to ensure that the detector has unique and novel impact. The motivation and consequences of the design philosophy are discussed. The key parameters reported are the neutron detection efficiency (7.5% at 2.5 Å), gamma sensitivity (1.5 × 10 -3 ), and a spatial resolution (modulation transfer function at 10%) of 6.4 lp/mm for a 4-μm-thick natural gadolinium neutron converter film.</description><identifier>ISSN: 0018-9499</identifier><identifier>EISSN: 1558-1578</identifier><identifier>DOI: 10.1109/TNS.2017.2772040</identifier><identifier>CODEN: IETNAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>CMOS ; CMOS image sensors ; Energy ; energy dispersive ; Energy resolution ; energy-resolved neutron radiography (ERNR) ; Gadolinium ; Image resolution ; imaging ; Mass spectrometry ; Mass spectroscopy ; Modulation transfer function ; Motivation ; neutron ; Neutron radiography ; Neutrons ; Philosophy ; PImMS ; Radiography ; Sensors ; Spatial discrimination ; Spatial resolution ; time of flight (ToF) ; Tomography ; Transfer functions</subject><ispartof>IEEE transactions on nuclear science, 2017-12, Vol.64 (12), p.2970-2981</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-c6869b25f90696eb5cd0c5f4a8375f750a7c3b6534f4dc37af9a70ccfd93b57a3</citedby><cites>FETCH-LOGICAL-c333t-c6869b25f90696eb5cd0c5f4a8375f750a7c3b6534f4dc37af9a70ccfd93b57a3</cites><orcidid>0000-0003-3421-0850 ; 0000-0001-8831-1919</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8103062$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8103062$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pooley, D. E.</creatorcontrib><creatorcontrib>Vallance, C.</creatorcontrib><creatorcontrib>Lee, J. W. L.</creatorcontrib><creatorcontrib>Brouard, M.</creatorcontrib><creatorcontrib>John, J. J.</creatorcontrib><creatorcontrib>Kockelmann, W.</creatorcontrib><creatorcontrib>Rhodes, N. J.</creatorcontrib><creatorcontrib>Schooneveld, E. M.</creatorcontrib><creatorcontrib>Sedgwick, I.</creatorcontrib><creatorcontrib>Turchetta, R.</creatorcontrib><title>Development of the "GP2" Detector: Modification of the PImMS CMOS Sensor for Energy-Resolved Neutron Radiography</title><title>IEEE transactions on nuclear science</title><addtitle>TNS</addtitle><description>This paper reports on the development and commissioning of the GP2 detector. GP2 was developed to address the requirement for a high-resolution event-mode imaging detector, for application in energy-resolved neutron radiography. The name GP2 derives from the use of gadolinium as a neutron conversion material, combined with a second-generation mass spectrometry sensor known as PImMS2. Theoretical and measured characteristics of GP2 are compared, with emphasis on the usability and functionality of the detector. The development of the detector has been steered by a design philosophy which was established to ensure that the detector has unique and novel impact. The motivation and consequences of the design philosophy are discussed. The key parameters reported are the neutron detection efficiency (7.5% at 2.5 Å), gamma sensitivity (1.5 × 10 -3 ), and a spatial resolution (modulation transfer function at 10%) of 6.4 lp/mm for a 4-μm-thick natural gadolinium neutron converter film.</description><subject>CMOS</subject><subject>CMOS image sensors</subject><subject>Energy</subject><subject>energy dispersive</subject><subject>Energy resolution</subject><subject>energy-resolved neutron radiography (ERNR)</subject><subject>Gadolinium</subject><subject>Image resolution</subject><subject>imaging</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Modulation transfer function</subject><subject>Motivation</subject><subject>neutron</subject><subject>Neutron radiography</subject><subject>Neutrons</subject><subject>Philosophy</subject><subject>PImMS</subject><subject>Radiography</subject><subject>Sensors</subject><subject>Spatial discrimination</subject><subject>Spatial resolution</subject><subject>time of flight (ToF)</subject><subject>Tomography</subject><subject>Transfer functions</subject><issn>0018-9499</issn><issn>1558-1578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1rwjAUhsPYYM7tfrCb4K7rkqZpmt0NdU7wC-uuS0xPtKJNl1TBf7-KbheHlwPPew48CD1T0qWUyLflNO2GhIpuKERIInKDWpTzJKBcJLeoRQhNAhlJeY8evN82a8QJb6GqD0fY2WoPZY2twfUGcGc4Dzu4DzXo2rp3PLF5YQqt6sKWf8x8tJ-kuDeZpTiF0luHTTODEtz6FCzA290RcjyFQ-2a0kLlhV07VW1Oj-jOqJ2Hp2u20ffnYNn7Csaz4aj3MQ40Y6wOdJzEchVyI0ksY1hxnRPNTaQSJrgRnCih2SrmLDJRrplQRipBtDa5ZCsuFGuj18vdytmfA_g629qDK5uXGZWNIsEiSRuKXCjtrPcOTFa5Yq_cKaMkO3vNGq_Z2Wt29dpUXi6VAgD-8YQSRuKQ_QKhwHNE</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Pooley, D. E.</creator><creator>Vallance, C.</creator><creator>Lee, J. W. L.</creator><creator>Brouard, M.</creator><creator>John, J. J.</creator><creator>Kockelmann, W.</creator><creator>Rhodes, N. J.</creator><creator>Schooneveld, E. M.</creator><creator>Sedgwick, I.</creator><creator>Turchetta, R.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0003-3421-0850</orcidid><orcidid>https://orcid.org/0000-0001-8831-1919</orcidid></search><sort><creationdate>20171201</creationdate><title>Development of the "GP2" Detector: Modification of the PImMS CMOS Sensor for Energy-Resolved Neutron Radiography</title><author>Pooley, D. E. ; Vallance, C. ; Lee, J. W. L. ; Brouard, M. ; John, J. J. ; Kockelmann, W. ; Rhodes, N. J. ; Schooneveld, E. M. ; Sedgwick, I. ; Turchetta, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-c6869b25f90696eb5cd0c5f4a8375f750a7c3b6534f4dc37af9a70ccfd93b57a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>CMOS</topic><topic>CMOS image sensors</topic><topic>Energy</topic><topic>energy dispersive</topic><topic>Energy resolution</topic><topic>energy-resolved neutron radiography (ERNR)</topic><topic>Gadolinium</topic><topic>Image resolution</topic><topic>imaging</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Modulation transfer function</topic><topic>Motivation</topic><topic>neutron</topic><topic>Neutron radiography</topic><topic>Neutrons</topic><topic>Philosophy</topic><topic>PImMS</topic><topic>Radiography</topic><topic>Sensors</topic><topic>Spatial discrimination</topic><topic>Spatial resolution</topic><topic>time of flight (ToF)</topic><topic>Tomography</topic><topic>Transfer functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pooley, D. E.</creatorcontrib><creatorcontrib>Vallance, C.</creatorcontrib><creatorcontrib>Lee, J. W. L.</creatorcontrib><creatorcontrib>Brouard, M.</creatorcontrib><creatorcontrib>John, J. J.</creatorcontrib><creatorcontrib>Kockelmann, W.</creatorcontrib><creatorcontrib>Rhodes, N. J.</creatorcontrib><creatorcontrib>Schooneveld, E. M.</creatorcontrib><creatorcontrib>Sedgwick, I.</creatorcontrib><creatorcontrib>Turchetta, R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>IEEE transactions on nuclear science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pooley, D. E.</au><au>Vallance, C.</au><au>Lee, J. W. L.</au><au>Brouard, M.</au><au>John, J. J.</au><au>Kockelmann, W.</au><au>Rhodes, N. J.</au><au>Schooneveld, E. M.</au><au>Sedgwick, I.</au><au>Turchetta, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of the "GP2" Detector: Modification of the PImMS CMOS Sensor for Energy-Resolved Neutron Radiography</atitle><jtitle>IEEE transactions on nuclear science</jtitle><stitle>TNS</stitle><date>2017-12-01</date><risdate>2017</risdate><volume>64</volume><issue>12</issue><spage>2970</spage><epage>2981</epage><pages>2970-2981</pages><issn>0018-9499</issn><eissn>1558-1578</eissn><coden>IETNAE</coden><abstract>This paper reports on the development and commissioning of the GP2 detector. GP2 was developed to address the requirement for a high-resolution event-mode imaging detector, for application in energy-resolved neutron radiography. The name GP2 derives from the use of gadolinium as a neutron conversion material, combined with a second-generation mass spectrometry sensor known as PImMS2. Theoretical and measured characteristics of GP2 are compared, with emphasis on the usability and functionality of the detector. The development of the detector has been steered by a design philosophy which was established to ensure that the detector has unique and novel impact. The motivation and consequences of the design philosophy are discussed. The key parameters reported are the neutron detection efficiency (7.5% at 2.5 Å), gamma sensitivity (1.5 × 10 -3 ), and a spatial resolution (modulation transfer function at 10%) of 6.4 lp/mm for a 4-μm-thick natural gadolinium neutron converter film.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNS.2017.2772040</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-3421-0850</orcidid><orcidid>https://orcid.org/0000-0001-8831-1919</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9499 |
ispartof | IEEE transactions on nuclear science, 2017-12, Vol.64 (12), p.2970-2981 |
issn | 0018-9499 1558-1578 |
language | eng |
recordid | cdi_proquest_journals_1977273491 |
source | IEEE Electronic Library (IEL) |
subjects | CMOS CMOS image sensors Energy energy dispersive Energy resolution energy-resolved neutron radiography (ERNR) Gadolinium Image resolution imaging Mass spectrometry Mass spectroscopy Modulation transfer function Motivation neutron Neutron radiography Neutrons Philosophy PImMS Radiography Sensors Spatial discrimination Spatial resolution time of flight (ToF) Tomography Transfer functions |
title | Development of the "GP2" Detector: Modification of the PImMS CMOS Sensor for Energy-Resolved Neutron Radiography |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T21%3A49%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20the%20%22GP2%22%20Detector:%20Modification%20of%20the%20PImMS%20CMOS%20Sensor%20for%20Energy-Resolved%20Neutron%20Radiography&rft.jtitle=IEEE%20transactions%20on%20nuclear%20science&rft.au=Pooley,%20D.%20E.&rft.date=2017-12-01&rft.volume=64&rft.issue=12&rft.spage=2970&rft.epage=2981&rft.pages=2970-2981&rft.issn=0018-9499&rft.eissn=1558-1578&rft.coden=IETNAE&rft_id=info:doi/10.1109/TNS.2017.2772040&rft_dat=%3Cproquest_RIE%3E1977273491%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1977273491&rft_id=info:pmid/&rft_ieee_id=8103062&rfr_iscdi=true |