Classification Accuracy for Stratification with Remotely Sensed Data

Tools are developed that help specify the classification accuracy required from remotely sensed data. These tools are applied during the planning stage of a sample survey that will use poststratification, prestratification with proportional allocation, or double sampling for stratification. Accuracy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Forest science 2003-06, Vol.49 (3), p.402-408
Hauptverfasser: Czaplewski, Raymond L., Patterson, Paul L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 408
container_issue 3
container_start_page 402
container_title Forest science
container_volume 49
creator Czaplewski, Raymond L.
Patterson, Paul L.
description Tools are developed that help specify the classification accuracy required from remotely sensed data. These tools are applied during the planning stage of a sample survey that will use poststratification, prestratification with proportional allocation, or double sampling for stratification. Accuracy standards are developed in terms of an “error matrix,” which is familiar to remote sensing specialists. In addition, guidance is provided to determine when new remotely sensed classifications are needed to maintain acceptable levels of statistical precision with stratification. FOR. SCI. 49(3):402–408.
doi_str_mv 10.1093/forestscience/49.3.402
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_197725164</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>353239911</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-9d06effa2e7c73dd074166f6dc1ee8b1a736339c126eafedc23afb1acafa9b233</originalsourceid><addsrcrecordid>eNpVkFFLAzEQhIMoWKt_QQ7fr02y1-TyWFqtQkGwCr6FbW6DV9q7mqRI_72RiuDTwuwww3yM3Qo-EtzA2PeBYoqupc7RuDIjGFVcnrGBMFCXoKE-ZwPOxaTUlXm_ZFcxbjjnNXA5YPPZFmNsfeswtX1XTJ07BHTHIqcWqxSy-vf7atNH8UK7PtH2WKyoi9QUc0x4zS48biPd_N4he3u4f509lsvnxdNsuiwdyDqVpuGKvEdJ2mloGq4roZRXjRNE9VqgBgVgnJCK0FPjJKDPskOPZi0BhuzulLsP_echj7ab_hC6XGmF0VpOhKqySZ1MLvQxBvJ2H9odhqMV3P4As_-A2cpYsBkYfAMj_2Tx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>197725164</pqid></control><display><type>article</type><title>Classification Accuracy for Stratification with Remotely Sensed Data</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Czaplewski, Raymond L. ; Patterson, Paul L.</creator><creatorcontrib>Czaplewski, Raymond L. ; Patterson, Paul L.</creatorcontrib><description>Tools are developed that help specify the classification accuracy required from remotely sensed data. These tools are applied during the planning stage of a sample survey that will use poststratification, prestratification with proportional allocation, or double sampling for stratification. Accuracy standards are developed in terms of an “error matrix,” which is familiar to remote sensing specialists. In addition, guidance is provided to determine when new remotely sensed classifications are needed to maintain acceptable levels of statistical precision with stratification. FOR. SCI. 49(3):402–408.</description><identifier>ISSN: 0015-749X</identifier><identifier>EISSN: 1938-3738</identifier><identifier>DOI: 10.1093/forestscience/49.3.402</identifier><language>eng</language><publisher>Bethesda: Oxford University Press</publisher><subject>Accuracy ; Classification ; Forestry ; Inventory ; Sensors ; Statistical analysis</subject><ispartof>Forest science, 2003-06, Vol.49 (3), p.402-408</ispartof><rights>Copyright Society of American Foresters Jun 2003</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-9d06effa2e7c73dd074166f6dc1ee8b1a736339c126eafedc23afb1acafa9b233</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Czaplewski, Raymond L.</creatorcontrib><creatorcontrib>Patterson, Paul L.</creatorcontrib><title>Classification Accuracy for Stratification with Remotely Sensed Data</title><title>Forest science</title><description>Tools are developed that help specify the classification accuracy required from remotely sensed data. These tools are applied during the planning stage of a sample survey that will use poststratification, prestratification with proportional allocation, or double sampling for stratification. Accuracy standards are developed in terms of an “error matrix,” which is familiar to remote sensing specialists. In addition, guidance is provided to determine when new remotely sensed classifications are needed to maintain acceptable levels of statistical precision with stratification. FOR. SCI. 49(3):402–408.</description><subject>Accuracy</subject><subject>Classification</subject><subject>Forestry</subject><subject>Inventory</subject><subject>Sensors</subject><subject>Statistical analysis</subject><issn>0015-749X</issn><issn>1938-3738</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpVkFFLAzEQhIMoWKt_QQ7fr02y1-TyWFqtQkGwCr6FbW6DV9q7mqRI_72RiuDTwuwww3yM3Qo-EtzA2PeBYoqupc7RuDIjGFVcnrGBMFCXoKE-ZwPOxaTUlXm_ZFcxbjjnNXA5YPPZFmNsfeswtX1XTJ07BHTHIqcWqxSy-vf7atNH8UK7PtH2WKyoi9QUc0x4zS48biPd_N4he3u4f509lsvnxdNsuiwdyDqVpuGKvEdJ2mloGq4roZRXjRNE9VqgBgVgnJCK0FPjJKDPskOPZi0BhuzulLsP_echj7ab_hC6XGmF0VpOhKqySZ1MLvQxBvJ2H9odhqMV3P4As_-A2cpYsBkYfAMj_2Tx</recordid><startdate>20030601</startdate><enddate>20030601</enddate><creator>Czaplewski, Raymond L.</creator><creator>Patterson, Paul L.</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SN</scope><scope>7ST</scope><scope>7X2</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M0K</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope><scope>SOI</scope></search><sort><creationdate>20030601</creationdate><title>Classification Accuracy for Stratification with Remotely Sensed Data</title><author>Czaplewski, Raymond L. ; Patterson, Paul L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-9d06effa2e7c73dd074166f6dc1ee8b1a736339c126eafedc23afb1acafa9b233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Accuracy</topic><topic>Classification</topic><topic>Forestry</topic><topic>Inventory</topic><topic>Sensors</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Czaplewski, Raymond L.</creatorcontrib><creatorcontrib>Patterson, Paul L.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Agricultural Science Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><jtitle>Forest science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Czaplewski, Raymond L.</au><au>Patterson, Paul L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Classification Accuracy for Stratification with Remotely Sensed Data</atitle><jtitle>Forest science</jtitle><date>2003-06-01</date><risdate>2003</risdate><volume>49</volume><issue>3</issue><spage>402</spage><epage>408</epage><pages>402-408</pages><issn>0015-749X</issn><eissn>1938-3738</eissn><abstract>Tools are developed that help specify the classification accuracy required from remotely sensed data. These tools are applied during the planning stage of a sample survey that will use poststratification, prestratification with proportional allocation, or double sampling for stratification. Accuracy standards are developed in terms of an “error matrix,” which is familiar to remote sensing specialists. In addition, guidance is provided to determine when new remotely sensed classifications are needed to maintain acceptable levels of statistical precision with stratification. FOR. SCI. 49(3):402–408.</abstract><cop>Bethesda</cop><pub>Oxford University Press</pub><doi>10.1093/forestscience/49.3.402</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0015-749X
ispartof Forest science, 2003-06, Vol.49 (3), p.402-408
issn 0015-749X
1938-3738
language eng
recordid cdi_proquest_journals_197725164
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford University Press Journals All Titles (1996-Current)
subjects Accuracy
Classification
Forestry
Inventory
Sensors
Statistical analysis
title Classification Accuracy for Stratification with Remotely Sensed Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T21%3A47%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Classification%20Accuracy%20for%20Stratification%20with%20Remotely%20Sensed%20Data&rft.jtitle=Forest%20science&rft.au=Czaplewski,%20Raymond%20L.&rft.date=2003-06-01&rft.volume=49&rft.issue=3&rft.spage=402&rft.epage=408&rft.pages=402-408&rft.issn=0015-749X&rft.eissn=1938-3738&rft_id=info:doi/10.1093/forestscience/49.3.402&rft_dat=%3Cproquest_cross%3E353239911%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=197725164&rft_id=info:pmid/&rfr_iscdi=true