Transversals in Latin Arrays with Many Distinct Symbols
An array is row‐Latin if no symbol is repeated within any row. An array is Latin if it and its transpose are both row‐Latin. A transversal in an n×n array is a selection of n different symbols from different rows and different columns. We prove that every n×n Latin array containing at least (2−2)n2...
Gespeichert in:
Veröffentlicht in: | Journal of combinatorial designs 2018-02, Vol.26 (2), p.84-96 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 96 |
---|---|
container_issue | 2 |
container_start_page | 84 |
container_title | Journal of combinatorial designs |
container_volume | 26 |
creator | Best, Darcy Hendrey, Kevin Wanless, Ian M. Wilson, Tim E. Wood, David R. |
description | An array is row‐Latin if no symbol is repeated within any row. An array is Latin if it and its transpose are both row‐Latin. A transversal in an n×n array is a selection of n different symbols from different rows and different columns. We prove that every n×n Latin array containing at least (2−2)n2 distinct symbols has a transversal. Also, every n×n row‐Latin array containing at least 14(5−5)n2 distinct symbols has a transversal. Finally, we show by computation that every Latin array of order 7 has a transversal, and we describe all smaller Latin arrays that have no transversal. |
doi_str_mv | 10.1002/jcd.21566 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1976491243</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1976491243</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2976-2020d32e817d11c5204814acca47f7b0811426d7cf123d684a1ab3b42de9d4af3</originalsourceid><addsrcrecordid>eNp1kE9PwzAMxSMEEmNw4BtU4sShm52kaXucNv6qiAPjHKVJKlp17Ug6pn57AuXKxbas3_OzHiHXCAsEoMtGmwXFRIgTMsOEQiwEwmmYQbA4S1h-Ti68bwAgz5mYkXTrVOe_rPOq9VHdRYUaQl05p0YfHevhI3pR3Rhtah_2eojexl3Zt_6SnFVBYa_--py8399t149x8frwtF4VsaZ5KmIKFAyjNsPUIOrwEM-QK60VT6u0hAyRU2FSXSFlRmRcoSpZyamxueGqYnNyM93du_7zYP0gm_7gumApMRjwHClngbqdKO16752t5N7VO-VGiSB_cpEhF_mbS2CXE3usWzv-D8rn9WZSfAOcGWJd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1976491243</pqid></control><display><type>article</type><title>Transversals in Latin Arrays with Many Distinct Symbols</title><source>Access via Wiley Online Library</source><creator>Best, Darcy ; Hendrey, Kevin ; Wanless, Ian M. ; Wilson, Tim E. ; Wood, David R.</creator><creatorcontrib>Best, Darcy ; Hendrey, Kevin ; Wanless, Ian M. ; Wilson, Tim E. ; Wood, David R.</creatorcontrib><description>An array is row‐Latin if no symbol is repeated within any row. An array is Latin if it and its transpose are both row‐Latin. A transversal in an n×n array is a selection of n different symbols from different rows and different columns. We prove that every n×n Latin array containing at least (2−2)n2 distinct symbols has a transversal. Also, every n×n row‐Latin array containing at least 14(5−5)n2 distinct symbols has a transversal. Finally, we show by computation that every Latin array of order 7 has a transversal, and we describe all smaller Latin arrays that have no transversal.</description><identifier>ISSN: 1063-8539</identifier><identifier>EISSN: 1520-6610</identifier><identifier>DOI: 10.1002/jcd.21566</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Latin array ; Latin square ; row‐Latin ; Symbols ; transversal</subject><ispartof>Journal of combinatorial designs, 2018-02, Vol.26 (2), p.84-96</ispartof><rights>2017 Wiley Periodicals, Inc.</rights><rights>Copyright © 2018 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2976-2020d32e817d11c5204814acca47f7b0811426d7cf123d684a1ab3b42de9d4af3</citedby><cites>FETCH-LOGICAL-c2976-2020d32e817d11c5204814acca47f7b0811426d7cf123d684a1ab3b42de9d4af3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjcd.21566$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjcd.21566$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Best, Darcy</creatorcontrib><creatorcontrib>Hendrey, Kevin</creatorcontrib><creatorcontrib>Wanless, Ian M.</creatorcontrib><creatorcontrib>Wilson, Tim E.</creatorcontrib><creatorcontrib>Wood, David R.</creatorcontrib><title>Transversals in Latin Arrays with Many Distinct Symbols</title><title>Journal of combinatorial designs</title><description>An array is row‐Latin if no symbol is repeated within any row. An array is Latin if it and its transpose are both row‐Latin. A transversal in an n×n array is a selection of n different symbols from different rows and different columns. We prove that every n×n Latin array containing at least (2−2)n2 distinct symbols has a transversal. Also, every n×n row‐Latin array containing at least 14(5−5)n2 distinct symbols has a transversal. Finally, we show by computation that every Latin array of order 7 has a transversal, and we describe all smaller Latin arrays that have no transversal.</description><subject>Latin array</subject><subject>Latin square</subject><subject>row‐Latin</subject><subject>Symbols</subject><subject>transversal</subject><issn>1063-8539</issn><issn>1520-6610</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE9PwzAMxSMEEmNw4BtU4sShm52kaXucNv6qiAPjHKVJKlp17Ug6pn57AuXKxbas3_OzHiHXCAsEoMtGmwXFRIgTMsOEQiwEwmmYQbA4S1h-Ti68bwAgz5mYkXTrVOe_rPOq9VHdRYUaQl05p0YfHevhI3pR3Rhtah_2eojexl3Zt_6SnFVBYa_--py8399t149x8frwtF4VsaZ5KmIKFAyjNsPUIOrwEM-QK60VT6u0hAyRU2FSXSFlRmRcoSpZyamxueGqYnNyM93du_7zYP0gm_7gumApMRjwHClngbqdKO16752t5N7VO-VGiSB_cpEhF_mbS2CXE3usWzv-D8rn9WZSfAOcGWJd</recordid><startdate>201802</startdate><enddate>201802</enddate><creator>Best, Darcy</creator><creator>Hendrey, Kevin</creator><creator>Wanless, Ian M.</creator><creator>Wilson, Tim E.</creator><creator>Wood, David R.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201802</creationdate><title>Transversals in Latin Arrays with Many Distinct Symbols</title><author>Best, Darcy ; Hendrey, Kevin ; Wanless, Ian M. ; Wilson, Tim E. ; Wood, David R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2976-2020d32e817d11c5204814acca47f7b0811426d7cf123d684a1ab3b42de9d4af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Latin array</topic><topic>Latin square</topic><topic>row‐Latin</topic><topic>Symbols</topic><topic>transversal</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Best, Darcy</creatorcontrib><creatorcontrib>Hendrey, Kevin</creatorcontrib><creatorcontrib>Wanless, Ian M.</creatorcontrib><creatorcontrib>Wilson, Tim E.</creatorcontrib><creatorcontrib>Wood, David R.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of combinatorial designs</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Best, Darcy</au><au>Hendrey, Kevin</au><au>Wanless, Ian M.</au><au>Wilson, Tim E.</au><au>Wood, David R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transversals in Latin Arrays with Many Distinct Symbols</atitle><jtitle>Journal of combinatorial designs</jtitle><date>2018-02</date><risdate>2018</risdate><volume>26</volume><issue>2</issue><spage>84</spage><epage>96</epage><pages>84-96</pages><issn>1063-8539</issn><eissn>1520-6610</eissn><abstract>An array is row‐Latin if no symbol is repeated within any row. An array is Latin if it and its transpose are both row‐Latin. A transversal in an n×n array is a selection of n different symbols from different rows and different columns. We prove that every n×n Latin array containing at least (2−2)n2 distinct symbols has a transversal. Also, every n×n row‐Latin array containing at least 14(5−5)n2 distinct symbols has a transversal. Finally, we show by computation that every Latin array of order 7 has a transversal, and we describe all smaller Latin arrays that have no transversal.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/jcd.21566</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-8539 |
ispartof | Journal of combinatorial designs, 2018-02, Vol.26 (2), p.84-96 |
issn | 1063-8539 1520-6610 |
language | eng |
recordid | cdi_proquest_journals_1976491243 |
source | Access via Wiley Online Library |
subjects | Latin array Latin square row‐Latin Symbols transversal |
title | Transversals in Latin Arrays with Many Distinct Symbols |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T11%3A51%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transversals%20in%20Latin%20Arrays%20with%20Many%20Distinct%20Symbols&rft.jtitle=Journal%20of%20combinatorial%20designs&rft.au=Best,%20Darcy&rft.date=2018-02&rft.volume=26&rft.issue=2&rft.spage=84&rft.epage=96&rft.pages=84-96&rft.issn=1063-8539&rft.eissn=1520-6610&rft_id=info:doi/10.1002/jcd.21566&rft_dat=%3Cproquest_cross%3E1976491243%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1976491243&rft_id=info:pmid/&rfr_iscdi=true |