Transversals in Latin Arrays with Many Distinct Symbols

An array is row‐Latin if no symbol is repeated within any row. An array is Latin if it and its transpose are both row‐Latin. A transversal in an n×n array is a selection of n different symbols from different rows and different columns. We prove that every n×n Latin array containing at least (2−2)n2...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of combinatorial designs 2018-02, Vol.26 (2), p.84-96
Hauptverfasser: Best, Darcy, Hendrey, Kevin, Wanless, Ian M., Wilson, Tim E., Wood, David R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 96
container_issue 2
container_start_page 84
container_title Journal of combinatorial designs
container_volume 26
creator Best, Darcy
Hendrey, Kevin
Wanless, Ian M.
Wilson, Tim E.
Wood, David R.
description An array is row‐Latin if no symbol is repeated within any row. An array is Latin if it and its transpose are both row‐Latin. A transversal in an n×n array is a selection of n different symbols from different rows and different columns. We prove that every n×n Latin array containing at least (2−2)n2 distinct symbols has a transversal. Also, every n×n row‐Latin array containing at least 14(5−5)n2 distinct symbols has a transversal. Finally, we show by computation that every Latin array of order 7 has a transversal, and we describe all smaller Latin arrays that have no transversal.
doi_str_mv 10.1002/jcd.21566
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1976491243</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1976491243</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2976-2020d32e817d11c5204814acca47f7b0811426d7cf123d684a1ab3b42de9d4af3</originalsourceid><addsrcrecordid>eNp1kE9PwzAMxSMEEmNw4BtU4sShm52kaXucNv6qiAPjHKVJKlp17Ug6pn57AuXKxbas3_OzHiHXCAsEoMtGmwXFRIgTMsOEQiwEwmmYQbA4S1h-Ti68bwAgz5mYkXTrVOe_rPOq9VHdRYUaQl05p0YfHevhI3pR3Rhtah_2eojexl3Zt_6SnFVBYa_--py8399t149x8frwtF4VsaZ5KmIKFAyjNsPUIOrwEM-QK60VT6u0hAyRU2FSXSFlRmRcoSpZyamxueGqYnNyM93du_7zYP0gm_7gumApMRjwHClngbqdKO16752t5N7VO-VGiSB_cpEhF_mbS2CXE3usWzv-D8rn9WZSfAOcGWJd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1976491243</pqid></control><display><type>article</type><title>Transversals in Latin Arrays with Many Distinct Symbols</title><source>Access via Wiley Online Library</source><creator>Best, Darcy ; Hendrey, Kevin ; Wanless, Ian M. ; Wilson, Tim E. ; Wood, David R.</creator><creatorcontrib>Best, Darcy ; Hendrey, Kevin ; Wanless, Ian M. ; Wilson, Tim E. ; Wood, David R.</creatorcontrib><description>An array is row‐Latin if no symbol is repeated within any row. An array is Latin if it and its transpose are both row‐Latin. A transversal in an n×n array is a selection of n different symbols from different rows and different columns. We prove that every n×n Latin array containing at least (2−2)n2 distinct symbols has a transversal. Also, every n×n row‐Latin array containing at least 14(5−5)n2 distinct symbols has a transversal. Finally, we show by computation that every Latin array of order 7 has a transversal, and we describe all smaller Latin arrays that have no transversal.</description><identifier>ISSN: 1063-8539</identifier><identifier>EISSN: 1520-6610</identifier><identifier>DOI: 10.1002/jcd.21566</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Latin array ; Latin square ; row‐Latin ; Symbols ; transversal</subject><ispartof>Journal of combinatorial designs, 2018-02, Vol.26 (2), p.84-96</ispartof><rights>2017 Wiley Periodicals, Inc.</rights><rights>Copyright © 2018 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2976-2020d32e817d11c5204814acca47f7b0811426d7cf123d684a1ab3b42de9d4af3</citedby><cites>FETCH-LOGICAL-c2976-2020d32e817d11c5204814acca47f7b0811426d7cf123d684a1ab3b42de9d4af3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjcd.21566$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjcd.21566$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Best, Darcy</creatorcontrib><creatorcontrib>Hendrey, Kevin</creatorcontrib><creatorcontrib>Wanless, Ian M.</creatorcontrib><creatorcontrib>Wilson, Tim E.</creatorcontrib><creatorcontrib>Wood, David R.</creatorcontrib><title>Transversals in Latin Arrays with Many Distinct Symbols</title><title>Journal of combinatorial designs</title><description>An array is row‐Latin if no symbol is repeated within any row. An array is Latin if it and its transpose are both row‐Latin. A transversal in an n×n array is a selection of n different symbols from different rows and different columns. We prove that every n×n Latin array containing at least (2−2)n2 distinct symbols has a transversal. Also, every n×n row‐Latin array containing at least 14(5−5)n2 distinct symbols has a transversal. Finally, we show by computation that every Latin array of order 7 has a transversal, and we describe all smaller Latin arrays that have no transversal.</description><subject>Latin array</subject><subject>Latin square</subject><subject>row‐Latin</subject><subject>Symbols</subject><subject>transversal</subject><issn>1063-8539</issn><issn>1520-6610</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE9PwzAMxSMEEmNw4BtU4sShm52kaXucNv6qiAPjHKVJKlp17Ug6pn57AuXKxbas3_OzHiHXCAsEoMtGmwXFRIgTMsOEQiwEwmmYQbA4S1h-Ti68bwAgz5mYkXTrVOe_rPOq9VHdRYUaQl05p0YfHevhI3pR3Rhtah_2eojexl3Zt_6SnFVBYa_--py8399t149x8frwtF4VsaZ5KmIKFAyjNsPUIOrwEM-QK60VT6u0hAyRU2FSXSFlRmRcoSpZyamxueGqYnNyM93du_7zYP0gm_7gumApMRjwHClngbqdKO16752t5N7VO-VGiSB_cpEhF_mbS2CXE3usWzv-D8rn9WZSfAOcGWJd</recordid><startdate>201802</startdate><enddate>201802</enddate><creator>Best, Darcy</creator><creator>Hendrey, Kevin</creator><creator>Wanless, Ian M.</creator><creator>Wilson, Tim E.</creator><creator>Wood, David R.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201802</creationdate><title>Transversals in Latin Arrays with Many Distinct Symbols</title><author>Best, Darcy ; Hendrey, Kevin ; Wanless, Ian M. ; Wilson, Tim E. ; Wood, David R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2976-2020d32e817d11c5204814acca47f7b0811426d7cf123d684a1ab3b42de9d4af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Latin array</topic><topic>Latin square</topic><topic>row‐Latin</topic><topic>Symbols</topic><topic>transversal</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Best, Darcy</creatorcontrib><creatorcontrib>Hendrey, Kevin</creatorcontrib><creatorcontrib>Wanless, Ian M.</creatorcontrib><creatorcontrib>Wilson, Tim E.</creatorcontrib><creatorcontrib>Wood, David R.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of combinatorial designs</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Best, Darcy</au><au>Hendrey, Kevin</au><au>Wanless, Ian M.</au><au>Wilson, Tim E.</au><au>Wood, David R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transversals in Latin Arrays with Many Distinct Symbols</atitle><jtitle>Journal of combinatorial designs</jtitle><date>2018-02</date><risdate>2018</risdate><volume>26</volume><issue>2</issue><spage>84</spage><epage>96</epage><pages>84-96</pages><issn>1063-8539</issn><eissn>1520-6610</eissn><abstract>An array is row‐Latin if no symbol is repeated within any row. An array is Latin if it and its transpose are both row‐Latin. A transversal in an n×n array is a selection of n different symbols from different rows and different columns. We prove that every n×n Latin array containing at least (2−2)n2 distinct symbols has a transversal. Also, every n×n row‐Latin array containing at least 14(5−5)n2 distinct symbols has a transversal. Finally, we show by computation that every Latin array of order 7 has a transversal, and we describe all smaller Latin arrays that have no transversal.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/jcd.21566</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1063-8539
ispartof Journal of combinatorial designs, 2018-02, Vol.26 (2), p.84-96
issn 1063-8539
1520-6610
language eng
recordid cdi_proquest_journals_1976491243
source Access via Wiley Online Library
subjects Latin array
Latin square
row‐Latin
Symbols
transversal
title Transversals in Latin Arrays with Many Distinct Symbols
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T11%3A51%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transversals%20in%20Latin%20Arrays%20with%20Many%20Distinct%20Symbols&rft.jtitle=Journal%20of%20combinatorial%20designs&rft.au=Best,%20Darcy&rft.date=2018-02&rft.volume=26&rft.issue=2&rft.spage=84&rft.epage=96&rft.pages=84-96&rft.issn=1063-8539&rft.eissn=1520-6610&rft_id=info:doi/10.1002/jcd.21566&rft_dat=%3Cproquest_cross%3E1976491243%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1976491243&rft_id=info:pmid/&rfr_iscdi=true