A survey on graphic processing unit computing for large‐scale data mining
General purpose computation using Graphic Processing Units (GPUs) is a well‐established research area focusing on high‐performance computing solutions for massively parallelizable and time‐consuming problems. Classical methodologies in machine learning and data mining cannot handle processing of mas...
Gespeichert in:
Veröffentlicht in: | Wiley interdisciplinary reviews. Data mining and knowledge discovery 2018-01, Vol.8 (1), p.e1232-n/a |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 1 |
container_start_page | e1232 |
container_title | Wiley interdisciplinary reviews. Data mining and knowledge discovery |
container_volume | 8 |
creator | Cano, Alberto |
description | General purpose computation using Graphic Processing Units (GPUs) is a well‐established research area focusing on high‐performance computing solutions for massively parallelizable and time‐consuming problems. Classical methodologies in machine learning and data mining cannot handle processing of massive and high‐speed volumes of information in the context of the big data era. GPUs have successfully improved the scalability of data mining algorithms to address significantly larger dataset sizes in many application areas. The popularization of distributed computing frameworks for big data mining opens up new opportunities for transformative solutions combining GPUs and distributed frameworks. This survey analyzes current trends in the use of GPU computing for large‐scale data mining, discusses GPU architecture advantages for handling volume and velocity of data, identifies limitation factors hampering the scalability of the problems, and discusses open issues and future directions. WIREs Data Mining Knowl Discov 2018, 8:e1232. doi: 10.1002/widm.1232
This article is categorized under:
Technologies > Computer Architectures for Data Mining
Technologies > Machine Learning
Technologies > Computational Intelligence
Graphic processing unit (GPU) architecture, multi‐GPU, and distributed‐GPU scalability. |
doi_str_mv | 10.1002/widm.1232 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1976366611</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1976366611</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3852-bb1accb641b9d0fbc5b8e7b25363fac01092d0846a64723c991991fe325151bb3</originalsourceid><addsrcrecordid>eNp1kMlOwzAQhi0EElXpgTewxIlDWi-JYx-rslUUcQFxtGzHKa6yYSdUufEIPCNPQkIRN0YjzYzmm0U_AOcYzTFCZLF3WTnHhJIjMMEiJlGciuT4L-fpKZiFsEODUcI5JxNwv4Sh8--2h3UFt141r87AxtfGhuCqLewq10JTl03XjmVee1gov7VfH5_BqMLCTLUKlq4aumfgJFdFsLPfOAXPN9dPq7to83i7Xi03kaE8IZHWWBmjWYy1yFCuTaK5TTVJKKO5MggjQTLEY6ZYnBJqhMCD55aSBCdYazoFF4e9w59vnQ2t3NWdr4aTEouUUcYYxgN1eaCMr0PwNpeNd6XyvcRIjnLJUS45yjWwiwO7d4Xt_wfly_rq4WfiGy5QbNA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1976366611</pqid></control><display><type>article</type><title>A survey on graphic processing unit computing for large‐scale data mining</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Cano, Alberto</creator><creatorcontrib>Cano, Alberto</creatorcontrib><description>General purpose computation using Graphic Processing Units (GPUs) is a well‐established research area focusing on high‐performance computing solutions for massively parallelizable and time‐consuming problems. Classical methodologies in machine learning and data mining cannot handle processing of massive and high‐speed volumes of information in the context of the big data era. GPUs have successfully improved the scalability of data mining algorithms to address significantly larger dataset sizes in many application areas. The popularization of distributed computing frameworks for big data mining opens up new opportunities for transformative solutions combining GPUs and distributed frameworks. This survey analyzes current trends in the use of GPU computing for large‐scale data mining, discusses GPU architecture advantages for handling volume and velocity of data, identifies limitation factors hampering the scalability of the problems, and discusses open issues and future directions. WIREs Data Mining Knowl Discov 2018, 8:e1232. doi: 10.1002/widm.1232
This article is categorized under:
Technologies > Computer Architectures for Data Mining
Technologies > Machine Learning
Technologies > Computational Intelligence
Graphic processing unit (GPU) architecture, multi‐GPU, and distributed‐GPU scalability.</description><identifier>ISSN: 1942-4787</identifier><identifier>EISSN: 1942-4795</identifier><identifier>DOI: 10.1002/widm.1232</identifier><language>eng</language><publisher>Hoboken, USA: Wiley Periodicals, Inc</publisher><subject>Artificial intelligence ; Big Data ; Computer networks ; Computing time ; Data management ; Data mining ; Distributed processing ; Graphics processing units ; Machine learning ; Parallel processing</subject><ispartof>Wiley interdisciplinary reviews. Data mining and knowledge discovery, 2018-01, Vol.8 (1), p.e1232-n/a</ispartof><rights>2017 Wiley Periodicals, Inc.</rights><rights>2018 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3852-bb1accb641b9d0fbc5b8e7b25363fac01092d0846a64723c991991fe325151bb3</citedby><cites>FETCH-LOGICAL-c3852-bb1accb641b9d0fbc5b8e7b25363fac01092d0846a64723c991991fe325151bb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fwidm.1232$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fwidm.1232$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Cano, Alberto</creatorcontrib><title>A survey on graphic processing unit computing for large‐scale data mining</title><title>Wiley interdisciplinary reviews. Data mining and knowledge discovery</title><description>General purpose computation using Graphic Processing Units (GPUs) is a well‐established research area focusing on high‐performance computing solutions for massively parallelizable and time‐consuming problems. Classical methodologies in machine learning and data mining cannot handle processing of massive and high‐speed volumes of information in the context of the big data era. GPUs have successfully improved the scalability of data mining algorithms to address significantly larger dataset sizes in many application areas. The popularization of distributed computing frameworks for big data mining opens up new opportunities for transformative solutions combining GPUs and distributed frameworks. This survey analyzes current trends in the use of GPU computing for large‐scale data mining, discusses GPU architecture advantages for handling volume and velocity of data, identifies limitation factors hampering the scalability of the problems, and discusses open issues and future directions. WIREs Data Mining Knowl Discov 2018, 8:e1232. doi: 10.1002/widm.1232
This article is categorized under:
Technologies > Computer Architectures for Data Mining
Technologies > Machine Learning
Technologies > Computational Intelligence
Graphic processing unit (GPU) architecture, multi‐GPU, and distributed‐GPU scalability.</description><subject>Artificial intelligence</subject><subject>Big Data</subject><subject>Computer networks</subject><subject>Computing time</subject><subject>Data management</subject><subject>Data mining</subject><subject>Distributed processing</subject><subject>Graphics processing units</subject><subject>Machine learning</subject><subject>Parallel processing</subject><issn>1942-4787</issn><issn>1942-4795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kMlOwzAQhi0EElXpgTewxIlDWi-JYx-rslUUcQFxtGzHKa6yYSdUufEIPCNPQkIRN0YjzYzmm0U_AOcYzTFCZLF3WTnHhJIjMMEiJlGciuT4L-fpKZiFsEODUcI5JxNwv4Sh8--2h3UFt141r87AxtfGhuCqLewq10JTl03XjmVee1gov7VfH5_BqMLCTLUKlq4aumfgJFdFsLPfOAXPN9dPq7to83i7Xi03kaE8IZHWWBmjWYy1yFCuTaK5TTVJKKO5MggjQTLEY6ZYnBJqhMCD55aSBCdYazoFF4e9w59vnQ2t3NWdr4aTEouUUcYYxgN1eaCMr0PwNpeNd6XyvcRIjnLJUS45yjWwiwO7d4Xt_wfly_rq4WfiGy5QbNA</recordid><startdate>201801</startdate><enddate>201801</enddate><creator>Cano, Alberto</creator><general>Wiley Periodicals, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201801</creationdate><title>A survey on graphic processing unit computing for large‐scale data mining</title><author>Cano, Alberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3852-bb1accb641b9d0fbc5b8e7b25363fac01092d0846a64723c991991fe325151bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Artificial intelligence</topic><topic>Big Data</topic><topic>Computer networks</topic><topic>Computing time</topic><topic>Data management</topic><topic>Data mining</topic><topic>Distributed processing</topic><topic>Graphics processing units</topic><topic>Machine learning</topic><topic>Parallel processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cano, Alberto</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Wiley interdisciplinary reviews. Data mining and knowledge discovery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cano, Alberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A survey on graphic processing unit computing for large‐scale data mining</atitle><jtitle>Wiley interdisciplinary reviews. Data mining and knowledge discovery</jtitle><date>2018-01</date><risdate>2018</risdate><volume>8</volume><issue>1</issue><spage>e1232</spage><epage>n/a</epage><pages>e1232-n/a</pages><issn>1942-4787</issn><eissn>1942-4795</eissn><abstract>General purpose computation using Graphic Processing Units (GPUs) is a well‐established research area focusing on high‐performance computing solutions for massively parallelizable and time‐consuming problems. Classical methodologies in machine learning and data mining cannot handle processing of massive and high‐speed volumes of information in the context of the big data era. GPUs have successfully improved the scalability of data mining algorithms to address significantly larger dataset sizes in many application areas. The popularization of distributed computing frameworks for big data mining opens up new opportunities for transformative solutions combining GPUs and distributed frameworks. This survey analyzes current trends in the use of GPU computing for large‐scale data mining, discusses GPU architecture advantages for handling volume and velocity of data, identifies limitation factors hampering the scalability of the problems, and discusses open issues and future directions. WIREs Data Mining Knowl Discov 2018, 8:e1232. doi: 10.1002/widm.1232
This article is categorized under:
Technologies > Computer Architectures for Data Mining
Technologies > Machine Learning
Technologies > Computational Intelligence
Graphic processing unit (GPU) architecture, multi‐GPU, and distributed‐GPU scalability.</abstract><cop>Hoboken, USA</cop><pub>Wiley Periodicals, Inc</pub><doi>10.1002/widm.1232</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1942-4787 |
ispartof | Wiley interdisciplinary reviews. Data mining and knowledge discovery, 2018-01, Vol.8 (1), p.e1232-n/a |
issn | 1942-4787 1942-4795 |
language | eng |
recordid | cdi_proquest_journals_1976366611 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Artificial intelligence Big Data Computer networks Computing time Data management Data mining Distributed processing Graphics processing units Machine learning Parallel processing |
title | A survey on graphic processing unit computing for large‐scale data mining |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T21%3A26%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20survey%20on%20graphic%20processing%20unit%20computing%20for%20large%E2%80%90scale%20data%20mining&rft.jtitle=Wiley%20interdisciplinary%20reviews.%20Data%20mining%20and%20knowledge%20discovery&rft.au=Cano,%20Alberto&rft.date=2018-01&rft.volume=8&rft.issue=1&rft.spage=e1232&rft.epage=n/a&rft.pages=e1232-n/a&rft.issn=1942-4787&rft.eissn=1942-4795&rft_id=info:doi/10.1002/widm.1232&rft_dat=%3Cproquest_cross%3E1976366611%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1976366611&rft_id=info:pmid/&rfr_iscdi=true |