Increase in Nutrients, Mercury, and Methylmercury as a Consequence of Elevated Sulfate Reduction to Sulfide in Experimental Wetland Mesocosms

Microbial sulfate reduction (MSR) in both freshwater and marine ecosystems is a pathway for the decomposition of sedimentary organic matter (OM) after oxygen has been consumed. In experimental freshwater wetland mesocosms, sulfate additions allowed MSR to mineralize OM that would not otherwise have...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Biogeosciences 2017-11, Vol.122 (11), p.2769-2785
Hauptverfasser: Myrbo, A., Swain, E. B., Johnson, N. W., Engstrom, D. R., Pastor, J., Dewey, B., Monson, P., Brenner, J., Dykhuizen Shore, M., Peters, E. B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Microbial sulfate reduction (MSR) in both freshwater and marine ecosystems is a pathway for the decomposition of sedimentary organic matter (OM) after oxygen has been consumed. In experimental freshwater wetland mesocosms, sulfate additions allowed MSR to mineralize OM that would not otherwise have been decomposed. The mineralization of OM by MSR increased surface water concentrations of ecologically important constituents of OM: dissolved inorganic carbon, dissolved organic carbon, phosphorus, nitrogen, total mercury, and methylmercury. Increases in surface water concentrations, except for methylmercury, were in proportion to cumulative sulfate reduction, which was estimated by sulfate loss from the surface water into the sediments. Stoichiometric analysis shows that the increases were less than would be predicted from ratios with carbon in sediment, indicating that there are processes that limit P, N, and Hg mobilization to, or retention in, surface water. The highest sulfate treatment produced high levels of sulfide that retarded the methylation of mercury but simultaneously mobilized sedimentary inorganic mercury into surface water. As a result, the proportion of mercury in the surface water as methylmercury peaked at intermediate pore water sulfide concentrations. The mesocosms have a relatively high ratio of wall and sediment surfaces to the volume of overlying water, perhaps enhancing the removal of nutrients and mercury to periphyton. The presence of wild rice decreased sediment sulfide concentrations by 30%, which was most likely a result of oxygen release from the wild rice roots. An additional consequence of the enhanced MSR was that sulfate additions produced phytotoxic levels of sulfide in sediment pore water. Key Points Sulfate addition increased organic matter mineralization in wetland sediment, releasing C, N, P, and Hg to the water column Sulfate reduction caused not only higher methylmercury concentrations but higher total mercury concentrations in the surface water Increased sulfate loading to freshwaters can cause deleterious effects separate from direct sulfide toxicity to organisms Plain Language Summary In the water‐saturated soils of wetlands, which are usually anoxic, decomposition of dead plants and other organic matter is greatly retarded by the absence of oxygen. However, the addition of sulfate can allow bacteria that respire sulfate, instead of oxygen, to decompose organic matter that would not otherwise decay. The accelerated
ISSN:2169-8953
2169-8961
DOI:10.1002/2017JG003788