Frequency-domain stability conditions for hybrid systems

Consideration was given to a special class of the hybrid systems with switchings of time-invariant linear right-hand sides. A narrower subclass of such systems, that of connected switched linear systems, was specified among them. The necessary and sufficient frequencydomain conditions (criteria) for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Automation and remote control 2017-12, Vol.78 (12), p.2101-2119
1. Verfasser: Kamenetskiy, V. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2119
container_issue 12
container_start_page 2101
container_title Automation and remote control
container_volume 78
creator Kamenetskiy, V. A.
description Consideration was given to a special class of the hybrid systems with switchings of time-invariant linear right-hand sides. A narrower subclass of such systems, that of connected switched linear systems, was specified among them. The necessary and sufficient frequencydomain conditions (criteria) for the existence of a common quadratic Lyapunov function providing stability of the switched systems were proposed for them. The specified subclass includes control systems with several nonstationary nonlinearities from the finite sectors that are the matter at issue of the theory of absolute stability. For the connected switched linear systems of a special kind (triangular type systems), the separate necessary and separate sufficient existence conditions were obtained for such Lyapunov functions. The interrelations between these conditions were discussed in the example.
doi_str_mv 10.1134/S0005117917120013
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1976030818</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1976030818</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-51d36efaac2dbf376fab26ddd89b148b521a5cc837a68168aa73e9e433b24de23</originalsourceid><addsrcrecordid>eNp1kE9LxDAUxIMoWFc_gLeC52peXpumR1lcFRY8qOeSf9Us22ZNuod-e1PqQRBP7zC_mXkMIddAbwGwvHullFYAdQM1MEoBT0gGnIoCKbJTks1yMevn5CLGXSKAMsyI2AT7dbSDngrje-mGPI5Sub0bp1z7wbjR-SHmnQ_556SCM3mc4mj7eEnOOrmP9urnrsj75uFt_VRsXx6f1_fbQiPwsajAILedlJoZ1WHNO6kYN8aIRkEpVMVAVloLrCUXwIWUNdrGloiKlcYyXJGbJfcQfHo0ju3OH8OQKltoak6RChCJgoXSwccYbNcegutlmFqg7TxQ-2eg5GGLJyZ2-LDhV_K_pm-eXWdE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1976030818</pqid></control><display><type>article</type><title>Frequency-domain stability conditions for hybrid systems</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kamenetskiy, V. A.</creator><creatorcontrib>Kamenetskiy, V. A.</creatorcontrib><description>Consideration was given to a special class of the hybrid systems with switchings of time-invariant linear right-hand sides. A narrower subclass of such systems, that of connected switched linear systems, was specified among them. The necessary and sufficient frequencydomain conditions (criteria) for the existence of a common quadratic Lyapunov function providing stability of the switched systems were proposed for them. The specified subclass includes control systems with several nonstationary nonlinearities from the finite sectors that are the matter at issue of the theory of absolute stability. For the connected switched linear systems of a special kind (triangular type systems), the separate necessary and separate sufficient existence conditions were obtained for such Lyapunov functions. The interrelations between these conditions were discussed in the example.</description><identifier>ISSN: 0005-1179</identifier><identifier>EISSN: 1608-3032</identifier><identifier>DOI: 10.1134/S0005117917120013</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>CAE) and Design ; Calculus of Variations and Optimal Control; Optimization ; Computer-Aided Engineering (CAD ; Control ; Frequency stability ; Hybrid systems ; Liapunov functions ; Linear Systems ; Mathematics ; Mathematics and Statistics ; Mechanical Engineering ; Mechatronics ; Robotics ; Systems Theory</subject><ispartof>Automation and remote control, 2017-12, Vol.78 (12), p.2101-2119</ispartof><rights>Pleiades Publishing, Ltd. 2017</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-51d36efaac2dbf376fab26ddd89b148b521a5cc837a68168aa73e9e433b24de23</citedby><cites>FETCH-LOGICAL-c316t-51d36efaac2dbf376fab26ddd89b148b521a5cc837a68168aa73e9e433b24de23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0005117917120013$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0005117917120013$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Kamenetskiy, V. A.</creatorcontrib><title>Frequency-domain stability conditions for hybrid systems</title><title>Automation and remote control</title><addtitle>Autom Remote Control</addtitle><description>Consideration was given to a special class of the hybrid systems with switchings of time-invariant linear right-hand sides. A narrower subclass of such systems, that of connected switched linear systems, was specified among them. The necessary and sufficient frequencydomain conditions (criteria) for the existence of a common quadratic Lyapunov function providing stability of the switched systems were proposed for them. The specified subclass includes control systems with several nonstationary nonlinearities from the finite sectors that are the matter at issue of the theory of absolute stability. For the connected switched linear systems of a special kind (triangular type systems), the separate necessary and separate sufficient existence conditions were obtained for such Lyapunov functions. The interrelations between these conditions were discussed in the example.</description><subject>CAE) and Design</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Control</subject><subject>Frequency stability</subject><subject>Hybrid systems</subject><subject>Liapunov functions</subject><subject>Linear Systems</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mechanical Engineering</subject><subject>Mechatronics</subject><subject>Robotics</subject><subject>Systems Theory</subject><issn>0005-1179</issn><issn>1608-3032</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LxDAUxIMoWFc_gLeC52peXpumR1lcFRY8qOeSf9Us22ZNuod-e1PqQRBP7zC_mXkMIddAbwGwvHullFYAdQM1MEoBT0gGnIoCKbJTks1yMevn5CLGXSKAMsyI2AT7dbSDngrje-mGPI5Sub0bp1z7wbjR-SHmnQ_556SCM3mc4mj7eEnOOrmP9urnrsj75uFt_VRsXx6f1_fbQiPwsajAILedlJoZ1WHNO6kYN8aIRkEpVMVAVloLrCUXwIWUNdrGloiKlcYyXJGbJfcQfHo0ju3OH8OQKltoak6RChCJgoXSwccYbNcegutlmFqg7TxQ-2eg5GGLJyZ2-LDhV_K_pm-eXWdE</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Kamenetskiy, V. A.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20171201</creationdate><title>Frequency-domain stability conditions for hybrid systems</title><author>Kamenetskiy, V. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-51d36efaac2dbf376fab26ddd89b148b521a5cc837a68168aa73e9e433b24de23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>CAE) and Design</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Control</topic><topic>Frequency stability</topic><topic>Hybrid systems</topic><topic>Liapunov functions</topic><topic>Linear Systems</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mechanical Engineering</topic><topic>Mechatronics</topic><topic>Robotics</topic><topic>Systems Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kamenetskiy, V. A.</creatorcontrib><collection>CrossRef</collection><jtitle>Automation and remote control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kamenetskiy, V. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Frequency-domain stability conditions for hybrid systems</atitle><jtitle>Automation and remote control</jtitle><stitle>Autom Remote Control</stitle><date>2017-12-01</date><risdate>2017</risdate><volume>78</volume><issue>12</issue><spage>2101</spage><epage>2119</epage><pages>2101-2119</pages><issn>0005-1179</issn><eissn>1608-3032</eissn><abstract>Consideration was given to a special class of the hybrid systems with switchings of time-invariant linear right-hand sides. A narrower subclass of such systems, that of connected switched linear systems, was specified among them. The necessary and sufficient frequencydomain conditions (criteria) for the existence of a common quadratic Lyapunov function providing stability of the switched systems were proposed for them. The specified subclass includes control systems with several nonstationary nonlinearities from the finite sectors that are the matter at issue of the theory of absolute stability. For the connected switched linear systems of a special kind (triangular type systems), the separate necessary and separate sufficient existence conditions were obtained for such Lyapunov functions. The interrelations between these conditions were discussed in the example.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0005117917120013</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0005-1179
ispartof Automation and remote control, 2017-12, Vol.78 (12), p.2101-2119
issn 0005-1179
1608-3032
language eng
recordid cdi_proquest_journals_1976030818
source SpringerLink Journals - AutoHoldings
subjects CAE) and Design
Calculus of Variations and Optimal Control
Optimization
Computer-Aided Engineering (CAD
Control
Frequency stability
Hybrid systems
Liapunov functions
Linear Systems
Mathematics
Mathematics and Statistics
Mechanical Engineering
Mechatronics
Robotics
Systems Theory
title Frequency-domain stability conditions for hybrid systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T21%3A15%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Frequency-domain%20stability%20conditions%20for%20hybrid%20systems&rft.jtitle=Automation%20and%20remote%20control&rft.au=Kamenetskiy,%20V.%20A.&rft.date=2017-12-01&rft.volume=78&rft.issue=12&rft.spage=2101&rft.epage=2119&rft.pages=2101-2119&rft.issn=0005-1179&rft.eissn=1608-3032&rft_id=info:doi/10.1134/S0005117917120013&rft_dat=%3Cproquest_cross%3E1976030818%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1976030818&rft_id=info:pmid/&rfr_iscdi=true