Frequency-domain stability conditions for hybrid systems
Consideration was given to a special class of the hybrid systems with switchings of time-invariant linear right-hand sides. A narrower subclass of such systems, that of connected switched linear systems, was specified among them. The necessary and sufficient frequencydomain conditions (criteria) for...
Gespeichert in:
Veröffentlicht in: | Automation and remote control 2017-12, Vol.78 (12), p.2101-2119 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2119 |
---|---|
container_issue | 12 |
container_start_page | 2101 |
container_title | Automation and remote control |
container_volume | 78 |
creator | Kamenetskiy, V. A. |
description | Consideration was given to a special class of the hybrid systems with switchings of time-invariant linear right-hand sides. A narrower subclass of such systems, that of connected switched linear systems, was specified among them. The necessary and sufficient frequencydomain conditions (criteria) for the existence of a common quadratic Lyapunov function providing stability of the switched systems were proposed for them. The specified subclass includes control systems with several nonstationary nonlinearities from the finite sectors that are the matter at issue of the theory of absolute stability. For the connected switched linear systems of a special kind (triangular type systems), the separate necessary and separate sufficient existence conditions were obtained for such Lyapunov functions. The interrelations between these conditions were discussed in the example. |
doi_str_mv | 10.1134/S0005117917120013 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1976030818</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1976030818</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-51d36efaac2dbf376fab26ddd89b148b521a5cc837a68168aa73e9e433b24de23</originalsourceid><addsrcrecordid>eNp1kE9LxDAUxIMoWFc_gLeC52peXpumR1lcFRY8qOeSf9Us22ZNuod-e1PqQRBP7zC_mXkMIddAbwGwvHullFYAdQM1MEoBT0gGnIoCKbJTks1yMevn5CLGXSKAMsyI2AT7dbSDngrje-mGPI5Sub0bp1z7wbjR-SHmnQ_556SCM3mc4mj7eEnOOrmP9urnrsj75uFt_VRsXx6f1_fbQiPwsajAILedlJoZ1WHNO6kYN8aIRkEpVMVAVloLrCUXwIWUNdrGloiKlcYyXJGbJfcQfHo0ju3OH8OQKltoak6RChCJgoXSwccYbNcegutlmFqg7TxQ-2eg5GGLJyZ2-LDhV_K_pm-eXWdE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1976030818</pqid></control><display><type>article</type><title>Frequency-domain stability conditions for hybrid systems</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kamenetskiy, V. A.</creator><creatorcontrib>Kamenetskiy, V. A.</creatorcontrib><description>Consideration was given to a special class of the hybrid systems with switchings of time-invariant linear right-hand sides. A narrower subclass of such systems, that of connected switched linear systems, was specified among them. The necessary and sufficient frequencydomain conditions (criteria) for the existence of a common quadratic Lyapunov function providing stability of the switched systems were proposed for them. The specified subclass includes control systems with several nonstationary nonlinearities from the finite sectors that are the matter at issue of the theory of absolute stability. For the connected switched linear systems of a special kind (triangular type systems), the separate necessary and separate sufficient existence conditions were obtained for such Lyapunov functions. The interrelations between these conditions were discussed in the example.</description><identifier>ISSN: 0005-1179</identifier><identifier>EISSN: 1608-3032</identifier><identifier>DOI: 10.1134/S0005117917120013</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>CAE) and Design ; Calculus of Variations and Optimal Control; Optimization ; Computer-Aided Engineering (CAD ; Control ; Frequency stability ; Hybrid systems ; Liapunov functions ; Linear Systems ; Mathematics ; Mathematics and Statistics ; Mechanical Engineering ; Mechatronics ; Robotics ; Systems Theory</subject><ispartof>Automation and remote control, 2017-12, Vol.78 (12), p.2101-2119</ispartof><rights>Pleiades Publishing, Ltd. 2017</rights><rights>Copyright Springer Science & Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-51d36efaac2dbf376fab26ddd89b148b521a5cc837a68168aa73e9e433b24de23</citedby><cites>FETCH-LOGICAL-c316t-51d36efaac2dbf376fab26ddd89b148b521a5cc837a68168aa73e9e433b24de23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0005117917120013$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0005117917120013$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Kamenetskiy, V. A.</creatorcontrib><title>Frequency-domain stability conditions for hybrid systems</title><title>Automation and remote control</title><addtitle>Autom Remote Control</addtitle><description>Consideration was given to a special class of the hybrid systems with switchings of time-invariant linear right-hand sides. A narrower subclass of such systems, that of connected switched linear systems, was specified among them. The necessary and sufficient frequencydomain conditions (criteria) for the existence of a common quadratic Lyapunov function providing stability of the switched systems were proposed for them. The specified subclass includes control systems with several nonstationary nonlinearities from the finite sectors that are the matter at issue of the theory of absolute stability. For the connected switched linear systems of a special kind (triangular type systems), the separate necessary and separate sufficient existence conditions were obtained for such Lyapunov functions. The interrelations between these conditions were discussed in the example.</description><subject>CAE) and Design</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Control</subject><subject>Frequency stability</subject><subject>Hybrid systems</subject><subject>Liapunov functions</subject><subject>Linear Systems</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mechanical Engineering</subject><subject>Mechatronics</subject><subject>Robotics</subject><subject>Systems Theory</subject><issn>0005-1179</issn><issn>1608-3032</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LxDAUxIMoWFc_gLeC52peXpumR1lcFRY8qOeSf9Us22ZNuod-e1PqQRBP7zC_mXkMIddAbwGwvHullFYAdQM1MEoBT0gGnIoCKbJTks1yMevn5CLGXSKAMsyI2AT7dbSDngrje-mGPI5Sub0bp1z7wbjR-SHmnQ_556SCM3mc4mj7eEnOOrmP9urnrsj75uFt_VRsXx6f1_fbQiPwsajAILedlJoZ1WHNO6kYN8aIRkEpVMVAVloLrCUXwIWUNdrGloiKlcYyXJGbJfcQfHo0ju3OH8OQKltoak6RChCJgoXSwccYbNcegutlmFqg7TxQ-2eg5GGLJyZ2-LDhV_K_pm-eXWdE</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Kamenetskiy, V. A.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20171201</creationdate><title>Frequency-domain stability conditions for hybrid systems</title><author>Kamenetskiy, V. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-51d36efaac2dbf376fab26ddd89b148b521a5cc837a68168aa73e9e433b24de23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>CAE) and Design</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Control</topic><topic>Frequency stability</topic><topic>Hybrid systems</topic><topic>Liapunov functions</topic><topic>Linear Systems</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mechanical Engineering</topic><topic>Mechatronics</topic><topic>Robotics</topic><topic>Systems Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kamenetskiy, V. A.</creatorcontrib><collection>CrossRef</collection><jtitle>Automation and remote control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kamenetskiy, V. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Frequency-domain stability conditions for hybrid systems</atitle><jtitle>Automation and remote control</jtitle><stitle>Autom Remote Control</stitle><date>2017-12-01</date><risdate>2017</risdate><volume>78</volume><issue>12</issue><spage>2101</spage><epage>2119</epage><pages>2101-2119</pages><issn>0005-1179</issn><eissn>1608-3032</eissn><abstract>Consideration was given to a special class of the hybrid systems with switchings of time-invariant linear right-hand sides. A narrower subclass of such systems, that of connected switched linear systems, was specified among them. The necessary and sufficient frequencydomain conditions (criteria) for the existence of a common quadratic Lyapunov function providing stability of the switched systems were proposed for them. The specified subclass includes control systems with several nonstationary nonlinearities from the finite sectors that are the matter at issue of the theory of absolute stability. For the connected switched linear systems of a special kind (triangular type systems), the separate necessary and separate sufficient existence conditions were obtained for such Lyapunov functions. The interrelations between these conditions were discussed in the example.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0005117917120013</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0005-1179 |
ispartof | Automation and remote control, 2017-12, Vol.78 (12), p.2101-2119 |
issn | 0005-1179 1608-3032 |
language | eng |
recordid | cdi_proquest_journals_1976030818 |
source | SpringerLink Journals - AutoHoldings |
subjects | CAE) and Design Calculus of Variations and Optimal Control Optimization Computer-Aided Engineering (CAD Control Frequency stability Hybrid systems Liapunov functions Linear Systems Mathematics Mathematics and Statistics Mechanical Engineering Mechatronics Robotics Systems Theory |
title | Frequency-domain stability conditions for hybrid systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T21%3A15%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Frequency-domain%20stability%20conditions%20for%20hybrid%20systems&rft.jtitle=Automation%20and%20remote%20control&rft.au=Kamenetskiy,%20V.%20A.&rft.date=2017-12-01&rft.volume=78&rft.issue=12&rft.spage=2101&rft.epage=2119&rft.pages=2101-2119&rft.issn=0005-1179&rft.eissn=1608-3032&rft_id=info:doi/10.1134/S0005117917120013&rft_dat=%3Cproquest_cross%3E1976030818%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1976030818&rft_id=info:pmid/&rfr_iscdi=true |