Debris flow density determined by grain composition

Density is one of the most important parameters of debris flows. Because observing an active debris flow is very difficult, finding a method to estimate debris flow density is urgently needed for disaster mitigation engineering. This paper proposes an effective empirical equation in terms of grain s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Landslides 2018-06, Vol.15 (6), p.1205-1213
Hauptverfasser: Wang, Baoliang, Li, Yong, Liu, Daochuan, Liu, Jingjing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1213
container_issue 6
container_start_page 1205
container_title Landslides
container_volume 15
creator Wang, Baoliang
Li, Yong
Liu, Daochuan
Liu, Jingjing
description Density is one of the most important parameters of debris flows. Because observing an active debris flow is very difficult, finding a method to estimate debris flow density is urgently needed for disaster mitigation engineering. This paper proposes an effective empirical equation in terms of grain size distribution (GSD) parameters based on observations in Jiangjia Gully, Yunnan Province, China. We found that the GSD follows P ( D ) =  KD -μ exp(−  D/D c), with μ and D c representing the fine and coarse grains, respectively. In particular, μ is associated with some characteristic porosity of soil in the natural state and increases with increased porosity. D c characterizes the grain size range of the flow and increases with the grain concentration. Studies show that flow density is related to both parameters in power law. Here, we propose an empirical equation for estimating flow density: ρ  = 1.26 μ -0.132  + 0.049 D c 0.443 , which provides not only an estimation of the density for a flow, but also describes the variation in density with the GSD of material composition; this provides important information related to the design of debris flow engineering structures.
doi_str_mv 10.1007/s10346-017-0912-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1975465748</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1975465748</sourcerecordid><originalsourceid>FETCH-LOGICAL-a339t-f6a6f504b7ca3ce4b6dd34a4e7706dbb34908d327a38672f5671b223d9e3babb3</originalsourceid><addsrcrecordid>eNp1kE1LwzAYx4MoOKcfwFvBc_TJS5PmKFOnMPCi4C0kTTo61qYmHW7f3oyKePH0_OH_8sAPoWsCtwRA3iUCjAsMRGJQhOL9CZoRkUVJSHX6q-HjHF2ktAGgCpiaIfbgbWxT0WzDV-F8n9rxkO_oY9f23hX2UKyjafuiDt0QstuG_hKdNWab_NXPnaP3p8e3xTNevS5fFvcrbBhTI26EEU0J3MrasNpzK5xj3HAvJQhnLeMKKseoNKwSkjalkMRSypzyzJrsz9HNtDvE8LnzadSbsIt9fqmJkiUXpeRVTpEpVceQUvSNHmLbmXjQBPSRjZ7Y6MxGH9nofe7QqZNytl_7-Gf539I3U6pnAw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1975465748</pqid></control><display><type>article</type><title>Debris flow density determined by grain composition</title><source>SpringerLink Journals</source><creator>Wang, Baoliang ; Li, Yong ; Liu, Daochuan ; Liu, Jingjing</creator><creatorcontrib>Wang, Baoliang ; Li, Yong ; Liu, Daochuan ; Liu, Jingjing</creatorcontrib><description>Density is one of the most important parameters of debris flows. Because observing an active debris flow is very difficult, finding a method to estimate debris flow density is urgently needed for disaster mitigation engineering. This paper proposes an effective empirical equation in terms of grain size distribution (GSD) parameters based on observations in Jiangjia Gully, Yunnan Province, China. We found that the GSD follows P ( D ) =  KD -μ exp(−  D/D c), with μ and D c representing the fine and coarse grains, respectively. In particular, μ is associated with some characteristic porosity of soil in the natural state and increases with increased porosity. D c characterizes the grain size range of the flow and increases with the grain concentration. Studies show that flow density is related to both parameters in power law. Here, we propose an empirical equation for estimating flow density: ρ  = 1.26 μ -0.132  + 0.049 D c 0.443 , which provides not only an estimation of the density for a flow, but also describes the variation in density with the GSD of material composition; this provides important information related to the design of debris flow engineering structures.</description><identifier>ISSN: 1612-510X</identifier><identifier>EISSN: 1612-5118</identifier><identifier>DOI: 10.1007/s10346-017-0912-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Agriculture ; Civil Engineering ; Debris flow ; Density ; Design engineering ; Detritus ; Disaster management ; Earth and Environmental Science ; Earth Sciences ; Emergency preparedness ; Empirical equations ; Flow estimation ; Geography ; Grain size ; Grain size distribution ; Gullies ; Landslides &amp; mudslides ; Mathematical models ; Mitigation ; Natural Hazards ; Original Paper ; Parameters ; Particle size ; Particle size distribution ; Porosity ; Power law ; Size distribution ; Soil ; Soil porosity</subject><ispartof>Landslides, 2018-06, Vol.15 (6), p.1205-1213</ispartof><rights>Springer-Verlag GmbH Germany 2017</rights><rights>Landslides is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a339t-f6a6f504b7ca3ce4b6dd34a4e7706dbb34908d327a38672f5671b223d9e3babb3</citedby><cites>FETCH-LOGICAL-a339t-f6a6f504b7ca3ce4b6dd34a4e7706dbb34908d327a38672f5671b223d9e3babb3</cites><orcidid>0000-0002-0548-5292</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10346-017-0912-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10346-017-0912-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Wang, Baoliang</creatorcontrib><creatorcontrib>Li, Yong</creatorcontrib><creatorcontrib>Liu, Daochuan</creatorcontrib><creatorcontrib>Liu, Jingjing</creatorcontrib><title>Debris flow density determined by grain composition</title><title>Landslides</title><addtitle>Landslides</addtitle><description>Density is one of the most important parameters of debris flows. Because observing an active debris flow is very difficult, finding a method to estimate debris flow density is urgently needed for disaster mitigation engineering. This paper proposes an effective empirical equation in terms of grain size distribution (GSD) parameters based on observations in Jiangjia Gully, Yunnan Province, China. We found that the GSD follows P ( D ) =  KD -μ exp(−  D/D c), with μ and D c representing the fine and coarse grains, respectively. In particular, μ is associated with some characteristic porosity of soil in the natural state and increases with increased porosity. D c characterizes the grain size range of the flow and increases with the grain concentration. Studies show that flow density is related to both parameters in power law. Here, we propose an empirical equation for estimating flow density: ρ  = 1.26 μ -0.132  + 0.049 D c 0.443 , which provides not only an estimation of the density for a flow, but also describes the variation in density with the GSD of material composition; this provides important information related to the design of debris flow engineering structures.</description><subject>Agriculture</subject><subject>Civil Engineering</subject><subject>Debris flow</subject><subject>Density</subject><subject>Design engineering</subject><subject>Detritus</subject><subject>Disaster management</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Emergency preparedness</subject><subject>Empirical equations</subject><subject>Flow estimation</subject><subject>Geography</subject><subject>Grain size</subject><subject>Grain size distribution</subject><subject>Gullies</subject><subject>Landslides &amp; mudslides</subject><subject>Mathematical models</subject><subject>Mitigation</subject><subject>Natural Hazards</subject><subject>Original Paper</subject><subject>Parameters</subject><subject>Particle size</subject><subject>Particle size distribution</subject><subject>Porosity</subject><subject>Power law</subject><subject>Size distribution</subject><subject>Soil</subject><subject>Soil porosity</subject><issn>1612-510X</issn><issn>1612-5118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kE1LwzAYx4MoOKcfwFvBc_TJS5PmKFOnMPCi4C0kTTo61qYmHW7f3oyKePH0_OH_8sAPoWsCtwRA3iUCjAsMRGJQhOL9CZoRkUVJSHX6q-HjHF2ktAGgCpiaIfbgbWxT0WzDV-F8n9rxkO_oY9f23hX2UKyjafuiDt0QstuG_hKdNWab_NXPnaP3p8e3xTNevS5fFvcrbBhTI26EEU0J3MrasNpzK5xj3HAvJQhnLeMKKseoNKwSkjalkMRSypzyzJrsz9HNtDvE8LnzadSbsIt9fqmJkiUXpeRVTpEpVceQUvSNHmLbmXjQBPSRjZ7Y6MxGH9nofe7QqZNytl_7-Gf539I3U6pnAw</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Wang, Baoliang</creator><creator>Li, Yong</creator><creator>Liu, Daochuan</creator><creator>Liu, Jingjing</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-0548-5292</orcidid></search><sort><creationdate>20180601</creationdate><title>Debris flow density determined by grain composition</title><author>Wang, Baoliang ; Li, Yong ; Liu, Daochuan ; Liu, Jingjing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a339t-f6a6f504b7ca3ce4b6dd34a4e7706dbb34908d327a38672f5671b223d9e3babb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Agriculture</topic><topic>Civil Engineering</topic><topic>Debris flow</topic><topic>Density</topic><topic>Design engineering</topic><topic>Detritus</topic><topic>Disaster management</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Emergency preparedness</topic><topic>Empirical equations</topic><topic>Flow estimation</topic><topic>Geography</topic><topic>Grain size</topic><topic>Grain size distribution</topic><topic>Gullies</topic><topic>Landslides &amp; mudslides</topic><topic>Mathematical models</topic><topic>Mitigation</topic><topic>Natural Hazards</topic><topic>Original Paper</topic><topic>Parameters</topic><topic>Particle size</topic><topic>Particle size distribution</topic><topic>Porosity</topic><topic>Power law</topic><topic>Size distribution</topic><topic>Soil</topic><topic>Soil porosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Baoliang</creatorcontrib><creatorcontrib>Li, Yong</creatorcontrib><creatorcontrib>Liu, Daochuan</creatorcontrib><creatorcontrib>Liu, Jingjing</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Landslides</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Baoliang</au><au>Li, Yong</au><au>Liu, Daochuan</au><au>Liu, Jingjing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Debris flow density determined by grain composition</atitle><jtitle>Landslides</jtitle><stitle>Landslides</stitle><date>2018-06-01</date><risdate>2018</risdate><volume>15</volume><issue>6</issue><spage>1205</spage><epage>1213</epage><pages>1205-1213</pages><issn>1612-510X</issn><eissn>1612-5118</eissn><abstract>Density is one of the most important parameters of debris flows. Because observing an active debris flow is very difficult, finding a method to estimate debris flow density is urgently needed for disaster mitigation engineering. This paper proposes an effective empirical equation in terms of grain size distribution (GSD) parameters based on observations in Jiangjia Gully, Yunnan Province, China. We found that the GSD follows P ( D ) =  KD -μ exp(−  D/D c), with μ and D c representing the fine and coarse grains, respectively. In particular, μ is associated with some characteristic porosity of soil in the natural state and increases with increased porosity. D c characterizes the grain size range of the flow and increases with the grain concentration. Studies show that flow density is related to both parameters in power law. Here, we propose an empirical equation for estimating flow density: ρ  = 1.26 μ -0.132  + 0.049 D c 0.443 , which provides not only an estimation of the density for a flow, but also describes the variation in density with the GSD of material composition; this provides important information related to the design of debris flow engineering structures.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10346-017-0912-x</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0548-5292</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1612-510X
ispartof Landslides, 2018-06, Vol.15 (6), p.1205-1213
issn 1612-510X
1612-5118
language eng
recordid cdi_proquest_journals_1975465748
source SpringerLink Journals
subjects Agriculture
Civil Engineering
Debris flow
Density
Design engineering
Detritus
Disaster management
Earth and Environmental Science
Earth Sciences
Emergency preparedness
Empirical equations
Flow estimation
Geography
Grain size
Grain size distribution
Gullies
Landslides & mudslides
Mathematical models
Mitigation
Natural Hazards
Original Paper
Parameters
Particle size
Particle size distribution
Porosity
Power law
Size distribution
Soil
Soil porosity
title Debris flow density determined by grain composition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T16%3A06%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Debris%20flow%20density%20determined%20by%20grain%20composition&rft.jtitle=Landslides&rft.au=Wang,%20Baoliang&rft.date=2018-06-01&rft.volume=15&rft.issue=6&rft.spage=1205&rft.epage=1213&rft.pages=1205-1213&rft.issn=1612-510X&rft.eissn=1612-5118&rft_id=info:doi/10.1007/s10346-017-0912-x&rft_dat=%3Cproquest_cross%3E1975465748%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1975465748&rft_id=info:pmid/&rfr_iscdi=true