Debris flow density determined by grain composition
Density is one of the most important parameters of debris flows. Because observing an active debris flow is very difficult, finding a method to estimate debris flow density is urgently needed for disaster mitigation engineering. This paper proposes an effective empirical equation in terms of grain s...
Gespeichert in:
Veröffentlicht in: | Landslides 2018-06, Vol.15 (6), p.1205-1213 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1213 |
---|---|
container_issue | 6 |
container_start_page | 1205 |
container_title | Landslides |
container_volume | 15 |
creator | Wang, Baoliang Li, Yong Liu, Daochuan Liu, Jingjing |
description | Density is one of the most important parameters of debris flows. Because observing an active debris flow is very difficult, finding a method to estimate debris flow density is urgently needed for disaster mitigation engineering. This paper proposes an effective empirical equation in terms of grain size distribution (GSD) parameters based on observations in Jiangjia Gully, Yunnan Province, China. We found that the GSD follows
P
(
D
) =
KD
-μ
exp(−
D/D
c), with
μ
and
D
c representing the fine and coarse grains, respectively. In particular,
μ
is associated with some characteristic porosity of soil in the natural state and increases with increased porosity.
D
c characterizes the grain size range of the flow and increases with the grain concentration. Studies show that flow density is related to both parameters in power law. Here, we propose an empirical equation for estimating flow density:
ρ
= 1.26
μ
-0.132
+ 0.049
D
c
0.443
, which provides not only an estimation of the density for a flow, but also describes the variation in density with the GSD of material composition; this provides important information related to the design of debris flow engineering structures. |
doi_str_mv | 10.1007/s10346-017-0912-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1975465748</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1975465748</sourcerecordid><originalsourceid>FETCH-LOGICAL-a339t-f6a6f504b7ca3ce4b6dd34a4e7706dbb34908d327a38672f5671b223d9e3babb3</originalsourceid><addsrcrecordid>eNp1kE1LwzAYx4MoOKcfwFvBc_TJS5PmKFOnMPCi4C0kTTo61qYmHW7f3oyKePH0_OH_8sAPoWsCtwRA3iUCjAsMRGJQhOL9CZoRkUVJSHX6q-HjHF2ktAGgCpiaIfbgbWxT0WzDV-F8n9rxkO_oY9f23hX2UKyjafuiDt0QstuG_hKdNWab_NXPnaP3p8e3xTNevS5fFvcrbBhTI26EEU0J3MrasNpzK5xj3HAvJQhnLeMKKseoNKwSkjalkMRSypzyzJrsz9HNtDvE8LnzadSbsIt9fqmJkiUXpeRVTpEpVceQUvSNHmLbmXjQBPSRjZ7Y6MxGH9nofe7QqZNytl_7-Gf539I3U6pnAw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1975465748</pqid></control><display><type>article</type><title>Debris flow density determined by grain composition</title><source>SpringerLink Journals</source><creator>Wang, Baoliang ; Li, Yong ; Liu, Daochuan ; Liu, Jingjing</creator><creatorcontrib>Wang, Baoliang ; Li, Yong ; Liu, Daochuan ; Liu, Jingjing</creatorcontrib><description>Density is one of the most important parameters of debris flows. Because observing an active debris flow is very difficult, finding a method to estimate debris flow density is urgently needed for disaster mitigation engineering. This paper proposes an effective empirical equation in terms of grain size distribution (GSD) parameters based on observations in Jiangjia Gully, Yunnan Province, China. We found that the GSD follows
P
(
D
) =
KD
-μ
exp(−
D/D
c), with
μ
and
D
c representing the fine and coarse grains, respectively. In particular,
μ
is associated with some characteristic porosity of soil in the natural state and increases with increased porosity.
D
c characterizes the grain size range of the flow and increases with the grain concentration. Studies show that flow density is related to both parameters in power law. Here, we propose an empirical equation for estimating flow density:
ρ
= 1.26
μ
-0.132
+ 0.049
D
c
0.443
, which provides not only an estimation of the density for a flow, but also describes the variation in density with the GSD of material composition; this provides important information related to the design of debris flow engineering structures.</description><identifier>ISSN: 1612-510X</identifier><identifier>EISSN: 1612-5118</identifier><identifier>DOI: 10.1007/s10346-017-0912-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Agriculture ; Civil Engineering ; Debris flow ; Density ; Design engineering ; Detritus ; Disaster management ; Earth and Environmental Science ; Earth Sciences ; Emergency preparedness ; Empirical equations ; Flow estimation ; Geography ; Grain size ; Grain size distribution ; Gullies ; Landslides & mudslides ; Mathematical models ; Mitigation ; Natural Hazards ; Original Paper ; Parameters ; Particle size ; Particle size distribution ; Porosity ; Power law ; Size distribution ; Soil ; Soil porosity</subject><ispartof>Landslides, 2018-06, Vol.15 (6), p.1205-1213</ispartof><rights>Springer-Verlag GmbH Germany 2017</rights><rights>Landslides is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a339t-f6a6f504b7ca3ce4b6dd34a4e7706dbb34908d327a38672f5671b223d9e3babb3</citedby><cites>FETCH-LOGICAL-a339t-f6a6f504b7ca3ce4b6dd34a4e7706dbb34908d327a38672f5671b223d9e3babb3</cites><orcidid>0000-0002-0548-5292</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10346-017-0912-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10346-017-0912-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Wang, Baoliang</creatorcontrib><creatorcontrib>Li, Yong</creatorcontrib><creatorcontrib>Liu, Daochuan</creatorcontrib><creatorcontrib>Liu, Jingjing</creatorcontrib><title>Debris flow density determined by grain composition</title><title>Landslides</title><addtitle>Landslides</addtitle><description>Density is one of the most important parameters of debris flows. Because observing an active debris flow is very difficult, finding a method to estimate debris flow density is urgently needed for disaster mitigation engineering. This paper proposes an effective empirical equation in terms of grain size distribution (GSD) parameters based on observations in Jiangjia Gully, Yunnan Province, China. We found that the GSD follows
P
(
D
) =
KD
-μ
exp(−
D/D
c), with
μ
and
D
c representing the fine and coarse grains, respectively. In particular,
μ
is associated with some characteristic porosity of soil in the natural state and increases with increased porosity.
D
c characterizes the grain size range of the flow and increases with the grain concentration. Studies show that flow density is related to both parameters in power law. Here, we propose an empirical equation for estimating flow density:
ρ
= 1.26
μ
-0.132
+ 0.049
D
c
0.443
, which provides not only an estimation of the density for a flow, but also describes the variation in density with the GSD of material composition; this provides important information related to the design of debris flow engineering structures.</description><subject>Agriculture</subject><subject>Civil Engineering</subject><subject>Debris flow</subject><subject>Density</subject><subject>Design engineering</subject><subject>Detritus</subject><subject>Disaster management</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Emergency preparedness</subject><subject>Empirical equations</subject><subject>Flow estimation</subject><subject>Geography</subject><subject>Grain size</subject><subject>Grain size distribution</subject><subject>Gullies</subject><subject>Landslides & mudslides</subject><subject>Mathematical models</subject><subject>Mitigation</subject><subject>Natural Hazards</subject><subject>Original Paper</subject><subject>Parameters</subject><subject>Particle size</subject><subject>Particle size distribution</subject><subject>Porosity</subject><subject>Power law</subject><subject>Size distribution</subject><subject>Soil</subject><subject>Soil porosity</subject><issn>1612-510X</issn><issn>1612-5118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kE1LwzAYx4MoOKcfwFvBc_TJS5PmKFOnMPCi4C0kTTo61qYmHW7f3oyKePH0_OH_8sAPoWsCtwRA3iUCjAsMRGJQhOL9CZoRkUVJSHX6q-HjHF2ktAGgCpiaIfbgbWxT0WzDV-F8n9rxkO_oY9f23hX2UKyjafuiDt0QstuG_hKdNWab_NXPnaP3p8e3xTNevS5fFvcrbBhTI26EEU0J3MrasNpzK5xj3HAvJQhnLeMKKseoNKwSkjalkMRSypzyzJrsz9HNtDvE8LnzadSbsIt9fqmJkiUXpeRVTpEpVceQUvSNHmLbmXjQBPSRjZ7Y6MxGH9nofe7QqZNytl_7-Gf539I3U6pnAw</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Wang, Baoliang</creator><creator>Li, Yong</creator><creator>Liu, Daochuan</creator><creator>Liu, Jingjing</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-0548-5292</orcidid></search><sort><creationdate>20180601</creationdate><title>Debris flow density determined by grain composition</title><author>Wang, Baoliang ; Li, Yong ; Liu, Daochuan ; Liu, Jingjing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a339t-f6a6f504b7ca3ce4b6dd34a4e7706dbb34908d327a38672f5671b223d9e3babb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Agriculture</topic><topic>Civil Engineering</topic><topic>Debris flow</topic><topic>Density</topic><topic>Design engineering</topic><topic>Detritus</topic><topic>Disaster management</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Emergency preparedness</topic><topic>Empirical equations</topic><topic>Flow estimation</topic><topic>Geography</topic><topic>Grain size</topic><topic>Grain size distribution</topic><topic>Gullies</topic><topic>Landslides & mudslides</topic><topic>Mathematical models</topic><topic>Mitigation</topic><topic>Natural Hazards</topic><topic>Original Paper</topic><topic>Parameters</topic><topic>Particle size</topic><topic>Particle size distribution</topic><topic>Porosity</topic><topic>Power law</topic><topic>Size distribution</topic><topic>Soil</topic><topic>Soil porosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Baoliang</creatorcontrib><creatorcontrib>Li, Yong</creatorcontrib><creatorcontrib>Liu, Daochuan</creatorcontrib><creatorcontrib>Liu, Jingjing</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Landslides</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Baoliang</au><au>Li, Yong</au><au>Liu, Daochuan</au><au>Liu, Jingjing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Debris flow density determined by grain composition</atitle><jtitle>Landslides</jtitle><stitle>Landslides</stitle><date>2018-06-01</date><risdate>2018</risdate><volume>15</volume><issue>6</issue><spage>1205</spage><epage>1213</epage><pages>1205-1213</pages><issn>1612-510X</issn><eissn>1612-5118</eissn><abstract>Density is one of the most important parameters of debris flows. Because observing an active debris flow is very difficult, finding a method to estimate debris flow density is urgently needed for disaster mitigation engineering. This paper proposes an effective empirical equation in terms of grain size distribution (GSD) parameters based on observations in Jiangjia Gully, Yunnan Province, China. We found that the GSD follows
P
(
D
) =
KD
-μ
exp(−
D/D
c), with
μ
and
D
c representing the fine and coarse grains, respectively. In particular,
μ
is associated with some characteristic porosity of soil in the natural state and increases with increased porosity.
D
c characterizes the grain size range of the flow and increases with the grain concentration. Studies show that flow density is related to both parameters in power law. Here, we propose an empirical equation for estimating flow density:
ρ
= 1.26
μ
-0.132
+ 0.049
D
c
0.443
, which provides not only an estimation of the density for a flow, but also describes the variation in density with the GSD of material composition; this provides important information related to the design of debris flow engineering structures.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10346-017-0912-x</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0548-5292</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1612-510X |
ispartof | Landslides, 2018-06, Vol.15 (6), p.1205-1213 |
issn | 1612-510X 1612-5118 |
language | eng |
recordid | cdi_proquest_journals_1975465748 |
source | SpringerLink Journals |
subjects | Agriculture Civil Engineering Debris flow Density Design engineering Detritus Disaster management Earth and Environmental Science Earth Sciences Emergency preparedness Empirical equations Flow estimation Geography Grain size Grain size distribution Gullies Landslides & mudslides Mathematical models Mitigation Natural Hazards Original Paper Parameters Particle size Particle size distribution Porosity Power law Size distribution Soil Soil porosity |
title | Debris flow density determined by grain composition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T16%3A06%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Debris%20flow%20density%20determined%20by%20grain%20composition&rft.jtitle=Landslides&rft.au=Wang,%20Baoliang&rft.date=2018-06-01&rft.volume=15&rft.issue=6&rft.spage=1205&rft.epage=1213&rft.pages=1205-1213&rft.issn=1612-510X&rft.eissn=1612-5118&rft_id=info:doi/10.1007/s10346-017-0912-x&rft_dat=%3Cproquest_cross%3E1975465748%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1975465748&rft_id=info:pmid/&rfr_iscdi=true |