A CFD study of coupled aerodynamic‐hydrodynamic loads on a semisubmersible floating offshore wind turbine

The prediction of dynamic characteristics for a floating offshore wind turbine (FOWT) is challenging because of the complex load coupling of aerodynamics, hydrodynamics, and structural dynamics. These loads should be accurately calculated to yield reliable analysis results in the design phase of a F...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wind energy (Chichester, England) England), 2018-01, Vol.21 (1), p.70-85
Hauptverfasser: Tran, Thanh Toan, Kim, Dong‐Hyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 85
container_issue 1
container_start_page 70
container_title Wind energy (Chichester, England)
container_volume 21
creator Tran, Thanh Toan
Kim, Dong‐Hyun
description The prediction of dynamic characteristics for a floating offshore wind turbine (FOWT) is challenging because of the complex load coupling of aerodynamics, hydrodynamics, and structural dynamics. These loads should be accurately calculated to yield reliable analysis results in the design phase of a FOWT. In this study, a high‐fidelity fluid‐structure interaction simulation that simultaneously considers the influence of aero‐hydrodynamic coupling due to the dynamic motion of a FOWT has been conducted using computational fluid dynamics based on an overset grid technique. The DeepCwind semisubmersible floating platform with the NREL 5‐MW baseline wind turbine model is considered for objective numerical verification with the NREL FAST code. A state‐of‐the‐art computational model based on the coupled computational fluid dynamics and dynamic structure analysis is constructed and analyzed to solve multiphase flow, 6 degrees of freedom motions of OC4 semisubmersible FOWT. A quasi‐static mooring solver is also applied to resolve the constraint motion of floater because of a 3‐line mooring system. The influence of tower shadow on the unsteady aerodynamic performance and loads is also demonstrated. Finally, complex unsteady flow fields considering blade and tower interference effects among blade‐tip vortices, shedding vortices, and turbulent wakes are numerically visualized and investigated in detail.
doi_str_mv 10.1002/we.2145
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1974926332</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1974926332</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2895-13b24bee3c752ffc9f19e9e11122902de64ee7a9d98f00636a575d4be6f4da713</originalsourceid><addsrcrecordid>eNp1kE1OwzAQhS0EEqUgrmCJBQuUYjvOj5dVaQGpEhsQS8uJx9QliYvdKMqOI3BGTkLaInasZkbzzXujh9AlJRNKCLvtYMIoT47QiBIhIpozfrzvk4gzzk_RWQhrQiihNB-h9ymeLe5w2La6x87g0rWbCjRW4J3uG1Xb8vvza9XrvxFXTumAXYMVDlDb0BY1-GCLCrAZdlvbvA1KJqycB9zZRuNt6wvbwDk6MaoKcPFbx-hlMX-ePUTLp_vH2XQZlSwfvqRxwXgBEJdZwowphaECBFBKGROEaUg5QKaEFrkhJI1TlWSJHi5Sw7XKaDxGVwfdjXcfLYStXLvWN4OlpCLjgqVxzAbq-kCV3oXgwciNt7XyvaRE7pKUHchdkgN5cyA7W0H_HyZf53v6BwsDdYI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1974926332</pqid></control><display><type>article</type><title>A CFD study of coupled aerodynamic‐hydrodynamic loads on a semisubmersible floating offshore wind turbine</title><source>Access via Wiley Online Library</source><creator>Tran, Thanh Toan ; Kim, Dong‐Hyun</creator><creatorcontrib>Tran, Thanh Toan ; Kim, Dong‐Hyun</creatorcontrib><description>The prediction of dynamic characteristics for a floating offshore wind turbine (FOWT) is challenging because of the complex load coupling of aerodynamics, hydrodynamics, and structural dynamics. These loads should be accurately calculated to yield reliable analysis results in the design phase of a FOWT. In this study, a high‐fidelity fluid‐structure interaction simulation that simultaneously considers the influence of aero‐hydrodynamic coupling due to the dynamic motion of a FOWT has been conducted using computational fluid dynamics based on an overset grid technique. The DeepCwind semisubmersible floating platform with the NREL 5‐MW baseline wind turbine model is considered for objective numerical verification with the NREL FAST code. A state‐of‐the‐art computational model based on the coupled computational fluid dynamics and dynamic structure analysis is constructed and analyzed to solve multiphase flow, 6 degrees of freedom motions of OC4 semisubmersible FOWT. A quasi‐static mooring solver is also applied to resolve the constraint motion of floater because of a 3‐line mooring system. The influence of tower shadow on the unsteady aerodynamic performance and loads is also demonstrated. Finally, complex unsteady flow fields considering blade and tower interference effects among blade‐tip vortices, shedding vortices, and turbulent wakes are numerically visualized and investigated in detail.</description><identifier>ISSN: 1095-4244</identifier><identifier>EISSN: 1099-1824</identifier><identifier>DOI: 10.1002/we.2145</identifier><language>eng</language><publisher>Bognor Regis: John Wiley &amp; Sons, Inc</publisher><subject>Aerodynamics ; Computational fluid dynamics ; computational fluid dynamics (CFD) ; Computer applications ; Computer simulation ; Coupling ; Dynamic characteristics ; Dynamic structural analysis ; FAST code ; Floating structures ; Fluid dynamics ; Fluid flow ; Fluid-structure interaction ; fluid‐structure interaction (FSI) ; fully coupled aerodynamic‐hydrodynamics ; Hydrodynamics ; Loads (forces) ; Mathematical models ; Mooring ; Multiphase flow ; OC4 DeepCwind ; Offshore drilling rigs ; Offshore energy sources ; Offshore operations ; overset grid ; Program verification (computers) ; Shedding ; Structural analysis ; Turbulence ; Turbulent wakes ; Unsteady flow ; Vortices ; Wakes ; Wind ; Wing tip vortices</subject><ispartof>Wind energy (Chichester, England), 2018-01, Vol.21 (1), p.70-85</ispartof><rights>Copyright © 2017 John Wiley &amp; Sons, Ltd.</rights><rights>Copyright © 2018 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2895-13b24bee3c752ffc9f19e9e11122902de64ee7a9d98f00636a575d4be6f4da713</citedby><cites>FETCH-LOGICAL-c2895-13b24bee3c752ffc9f19e9e11122902de64ee7a9d98f00636a575d4be6f4da713</cites><orcidid>0000-0003-4810-5920</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fwe.2145$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fwe.2145$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Tran, Thanh Toan</creatorcontrib><creatorcontrib>Kim, Dong‐Hyun</creatorcontrib><title>A CFD study of coupled aerodynamic‐hydrodynamic loads on a semisubmersible floating offshore wind turbine</title><title>Wind energy (Chichester, England)</title><description>The prediction of dynamic characteristics for a floating offshore wind turbine (FOWT) is challenging because of the complex load coupling of aerodynamics, hydrodynamics, and structural dynamics. These loads should be accurately calculated to yield reliable analysis results in the design phase of a FOWT. In this study, a high‐fidelity fluid‐structure interaction simulation that simultaneously considers the influence of aero‐hydrodynamic coupling due to the dynamic motion of a FOWT has been conducted using computational fluid dynamics based on an overset grid technique. The DeepCwind semisubmersible floating platform with the NREL 5‐MW baseline wind turbine model is considered for objective numerical verification with the NREL FAST code. A state‐of‐the‐art computational model based on the coupled computational fluid dynamics and dynamic structure analysis is constructed and analyzed to solve multiphase flow, 6 degrees of freedom motions of OC4 semisubmersible FOWT. A quasi‐static mooring solver is also applied to resolve the constraint motion of floater because of a 3‐line mooring system. The influence of tower shadow on the unsteady aerodynamic performance and loads is also demonstrated. Finally, complex unsteady flow fields considering blade and tower interference effects among blade‐tip vortices, shedding vortices, and turbulent wakes are numerically visualized and investigated in detail.</description><subject>Aerodynamics</subject><subject>Computational fluid dynamics</subject><subject>computational fluid dynamics (CFD)</subject><subject>Computer applications</subject><subject>Computer simulation</subject><subject>Coupling</subject><subject>Dynamic characteristics</subject><subject>Dynamic structural analysis</subject><subject>FAST code</subject><subject>Floating structures</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluid-structure interaction</subject><subject>fluid‐structure interaction (FSI)</subject><subject>fully coupled aerodynamic‐hydrodynamics</subject><subject>Hydrodynamics</subject><subject>Loads (forces)</subject><subject>Mathematical models</subject><subject>Mooring</subject><subject>Multiphase flow</subject><subject>OC4 DeepCwind</subject><subject>Offshore drilling rigs</subject><subject>Offshore energy sources</subject><subject>Offshore operations</subject><subject>overset grid</subject><subject>Program verification (computers)</subject><subject>Shedding</subject><subject>Structural analysis</subject><subject>Turbulence</subject><subject>Turbulent wakes</subject><subject>Unsteady flow</subject><subject>Vortices</subject><subject>Wakes</subject><subject>Wind</subject><subject>Wing tip vortices</subject><issn>1095-4244</issn><issn>1099-1824</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE1OwzAQhS0EEqUgrmCJBQuUYjvOj5dVaQGpEhsQS8uJx9QliYvdKMqOI3BGTkLaInasZkbzzXujh9AlJRNKCLvtYMIoT47QiBIhIpozfrzvk4gzzk_RWQhrQiihNB-h9ymeLe5w2La6x87g0rWbCjRW4J3uG1Xb8vvza9XrvxFXTumAXYMVDlDb0BY1-GCLCrAZdlvbvA1KJqycB9zZRuNt6wvbwDk6MaoKcPFbx-hlMX-ePUTLp_vH2XQZlSwfvqRxwXgBEJdZwowphaECBFBKGROEaUg5QKaEFrkhJI1TlWSJHi5Sw7XKaDxGVwfdjXcfLYStXLvWN4OlpCLjgqVxzAbq-kCV3oXgwciNt7XyvaRE7pKUHchdkgN5cyA7W0H_HyZf53v6BwsDdYI</recordid><startdate>201801</startdate><enddate>201801</enddate><creator>Tran, Thanh Toan</creator><creator>Kim, Dong‐Hyun</creator><general>John Wiley &amp; Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-4810-5920</orcidid></search><sort><creationdate>201801</creationdate><title>A CFD study of coupled aerodynamic‐hydrodynamic loads on a semisubmersible floating offshore wind turbine</title><author>Tran, Thanh Toan ; Kim, Dong‐Hyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2895-13b24bee3c752ffc9f19e9e11122902de64ee7a9d98f00636a575d4be6f4da713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aerodynamics</topic><topic>Computational fluid dynamics</topic><topic>computational fluid dynamics (CFD)</topic><topic>Computer applications</topic><topic>Computer simulation</topic><topic>Coupling</topic><topic>Dynamic characteristics</topic><topic>Dynamic structural analysis</topic><topic>FAST code</topic><topic>Floating structures</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluid-structure interaction</topic><topic>fluid‐structure interaction (FSI)</topic><topic>fully coupled aerodynamic‐hydrodynamics</topic><topic>Hydrodynamics</topic><topic>Loads (forces)</topic><topic>Mathematical models</topic><topic>Mooring</topic><topic>Multiphase flow</topic><topic>OC4 DeepCwind</topic><topic>Offshore drilling rigs</topic><topic>Offshore energy sources</topic><topic>Offshore operations</topic><topic>overset grid</topic><topic>Program verification (computers)</topic><topic>Shedding</topic><topic>Structural analysis</topic><topic>Turbulence</topic><topic>Turbulent wakes</topic><topic>Unsteady flow</topic><topic>Vortices</topic><topic>Wakes</topic><topic>Wind</topic><topic>Wing tip vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tran, Thanh Toan</creatorcontrib><creatorcontrib>Kim, Dong‐Hyun</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><jtitle>Wind energy (Chichester, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tran, Thanh Toan</au><au>Kim, Dong‐Hyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A CFD study of coupled aerodynamic‐hydrodynamic loads on a semisubmersible floating offshore wind turbine</atitle><jtitle>Wind energy (Chichester, England)</jtitle><date>2018-01</date><risdate>2018</risdate><volume>21</volume><issue>1</issue><spage>70</spage><epage>85</epage><pages>70-85</pages><issn>1095-4244</issn><eissn>1099-1824</eissn><abstract>The prediction of dynamic characteristics for a floating offshore wind turbine (FOWT) is challenging because of the complex load coupling of aerodynamics, hydrodynamics, and structural dynamics. These loads should be accurately calculated to yield reliable analysis results in the design phase of a FOWT. In this study, a high‐fidelity fluid‐structure interaction simulation that simultaneously considers the influence of aero‐hydrodynamic coupling due to the dynamic motion of a FOWT has been conducted using computational fluid dynamics based on an overset grid technique. The DeepCwind semisubmersible floating platform with the NREL 5‐MW baseline wind turbine model is considered for objective numerical verification with the NREL FAST code. A state‐of‐the‐art computational model based on the coupled computational fluid dynamics and dynamic structure analysis is constructed and analyzed to solve multiphase flow, 6 degrees of freedom motions of OC4 semisubmersible FOWT. A quasi‐static mooring solver is also applied to resolve the constraint motion of floater because of a 3‐line mooring system. The influence of tower shadow on the unsteady aerodynamic performance and loads is also demonstrated. Finally, complex unsteady flow fields considering blade and tower interference effects among blade‐tip vortices, shedding vortices, and turbulent wakes are numerically visualized and investigated in detail.</abstract><cop>Bognor Regis</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/we.2145</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-4810-5920</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1095-4244
ispartof Wind energy (Chichester, England), 2018-01, Vol.21 (1), p.70-85
issn 1095-4244
1099-1824
language eng
recordid cdi_proquest_journals_1974926332
source Access via Wiley Online Library
subjects Aerodynamics
Computational fluid dynamics
computational fluid dynamics (CFD)
Computer applications
Computer simulation
Coupling
Dynamic characteristics
Dynamic structural analysis
FAST code
Floating structures
Fluid dynamics
Fluid flow
Fluid-structure interaction
fluid‐structure interaction (FSI)
fully coupled aerodynamic‐hydrodynamics
Hydrodynamics
Loads (forces)
Mathematical models
Mooring
Multiphase flow
OC4 DeepCwind
Offshore drilling rigs
Offshore energy sources
Offshore operations
overset grid
Program verification (computers)
Shedding
Structural analysis
Turbulence
Turbulent wakes
Unsteady flow
Vortices
Wakes
Wind
Wing tip vortices
title A CFD study of coupled aerodynamic‐hydrodynamic loads on a semisubmersible floating offshore wind turbine
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T23%3A33%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20CFD%20study%20of%20coupled%20aerodynamic%E2%80%90hydrodynamic%20loads%20on%20a%20semisubmersible%20floating%20offshore%20wind%20turbine&rft.jtitle=Wind%20energy%20(Chichester,%20England)&rft.au=Tran,%20Thanh%20Toan&rft.date=2018-01&rft.volume=21&rft.issue=1&rft.spage=70&rft.epage=85&rft.pages=70-85&rft.issn=1095-4244&rft.eissn=1099-1824&rft_id=info:doi/10.1002/we.2145&rft_dat=%3Cproquest_cross%3E1974926332%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1974926332&rft_id=info:pmid/&rfr_iscdi=true