Vegetables Affect the Expression of Genes Involved in Carcinogenic and Anticarcinogenic Processes in the Lungs of Female C57Bl/6 Mice1

Worldwide, lung cancer is the most prevalent and lethal malignant disease. In addition to avoidance of the most predominant risk factor, i.e., tobacco use, consumption of high amounts of vegetables and fruits could be an effective means of preventing lung cancer. However, the molecular mechanisms un...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of nutrition 2005-11, Vol.135 (11), p.2546-2552
Hauptverfasser: van Breda, Simone G., van Agen, Ebienus, van Sanden, Suzy, Burzykowski, Tomasz, Kleinjans, Jos C., Delft, Joost H. van
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Worldwide, lung cancer is the most prevalent and lethal malignant disease. In addition to avoidance of the most predominant risk factor, i.e., tobacco use, consumption of high amounts of vegetables and fruits could be an effective means of preventing lung cancer. However, the molecular mechanisms underlying lung cancer risk reduction by vegetables are not clear. In the present study, the effect of vegetables on gene expression changes in the lungs of female C57Bl/6 mice was investigated using cDNA microarray technology. The mice were fed 1 of 8 diets for 2 wk: a control diet containing no vegetables (diet 1); a diet containing a vegetable mixture at 100 (diet 2, 10% dose), 200 (diet 3, 20% dose), or 400 (diet 4, 40% dose) g/kg; or a diet containing cauliflower at 70 (diet 5, 7% dose); carrots at 73 (diet 6, 7.3% dose); peas at 226 (diet 7, 22.6% dose); or onions at 31 (diet 8, 3.1% dose) g/kg. The vegetable mixture consisted of these 4 individual vegetables. After the mice were killed, the lungs were removed and total RNA was isolated from the lungs for expression analysis of 602 genes involved in pathways of (anti)-carcinogenesis. The results of this study suggest that individual vegetables have a higher potential of modulating genes (5 from the 8 modulated genes) in favor of lung cancer risk prevention, in comparison with the vegetable mixture (2 from the 7 modulated genes); the other gene modulations are expected to enhance lung cancer risk. The pathways involved were miscellaneous and included cell growth, apoptosis, biotransformation, and immune response. Furthermore, carrots were able to modulate most gene expressions, and most of these effects occurred in processes that favored lung cancer risk prevention. The current study provides more insight into the genetic mechanisms by which vegetables, in particular carrots, can prevent lung cancer risk.
ISSN:0022-3166
1541-6100
DOI:10.1093/jn/135.11.2546