X‐Ray Absorption Spectroscopy of TiO2 Nanoparticles in Water Using a Holey Membrane‐Based Flow Cell
Many applications of TiO2 nanoparticles, such as photocatalytic water splitting or water remediation, occur in aqueous environment. However, the impact of solvation on TiO2 electronic structure remains unclear because only few experimental methods are currently available to probe nanoparticle–water...
Gespeichert in:
Veröffentlicht in: | Advanced materials interfaces 2017-12, Vol.4 (23), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 23 |
container_start_page | |
container_title | Advanced materials interfaces |
container_volume | 4 |
creator | Petit, Tristan Ren, Jian Choudhury, Sneha Golnak, Ronny Lalithambika, Sreeju S. N. Tesch, Marc F. Xiao, Jie Aziz, Emad F. |
description | Many applications of TiO2 nanoparticles, such as photocatalytic water splitting or water remediation, occur in aqueous environment. However, the impact of solvation on TiO2 electronic structure remains unclear because only few experimental methods are currently available to probe nanoparticle–water interface. Soft X‐ray absorption spectroscopy has been extensively used to characterize the electronic structure of TiO2 materials, but so far only in vacuum conditions. Here, oxygen K edge and titanium L edge X‐ray absorption spectroscopy characterization of TiO2 nanoparticles measured directly in aqueous dispersion is presented. For this purpose, a new method to probe nanomaterials in liquid using a holey membrane‐based flow cell is introduced. With this approach, the X‐ray transmission of the membrane is increased, especially in the water window, compared to solid membranes.
TiO2 nanoparticles are characterized in situ in aqueous dispersions by soft X‐ray absorption spectroscopy at the oxygen K edge and titanium L edge. For this purpose, a new flow cell method using a holey membrane to increase X‐ray transmission of the membrane is introduced. The influence of hydration on the electronic structure of TiO2 nanoparticles is discussed. |
doi_str_mv | 10.1002/admi.201700755 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_1974544972</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1974544972</sourcerecordid><originalsourceid>FETCH-LOGICAL-g3105-9295c80a7fe174c2ede0bfe7060eba1a3db4c16369b4a038113ab72001e796043</originalsourceid><addsrcrecordid>eNpNkEFPwkAQhTdGEwly9byJZ3B2t-2yR0QREpBEIXprtu2ULCndultCevMn-Bv9JZZgiKeZSV7ee_MRcstgwAD4vc52ZsCBSQAZhhekw5mK-lKEcPlvvyY977cAwBhnfCg6ZPPx8_X9qhs6Srx1VW1sSd8qTGtnfWqrhtqcrsyS0xdd2kq72qQFempK-q5rdHTtTbmhmk5tgQ1d4C5xusTW80F7zOiksAc6xqK4IVe5Ljz2_maXrCdPq_G0P18-z8ajeX8jGIR9xVWYDkHLHJkMUo4ZQpKjhAgw0UyLLAlSFolIJYEGMWRM6ETy9iGUKoJAdMndybdy9nOPvo63du_KNjJmSgZhECjJW5U6qQ6mrR1Xzuy0a2IG8RFmfIQZn2HGo8fF7HyJX1C7a2M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1974544972</pqid></control><display><type>article</type><title>X‐Ray Absorption Spectroscopy of TiO2 Nanoparticles in Water Using a Holey Membrane‐Based Flow Cell</title><source>Wiley-Blackwell Journals</source><creator>Petit, Tristan ; Ren, Jian ; Choudhury, Sneha ; Golnak, Ronny ; Lalithambika, Sreeju S. N. ; Tesch, Marc F. ; Xiao, Jie ; Aziz, Emad F.</creator><creatorcontrib>Petit, Tristan ; Ren, Jian ; Choudhury, Sneha ; Golnak, Ronny ; Lalithambika, Sreeju S. N. ; Tesch, Marc F. ; Xiao, Jie ; Aziz, Emad F.</creatorcontrib><description>Many applications of TiO2 nanoparticles, such as photocatalytic water splitting or water remediation, occur in aqueous environment. However, the impact of solvation on TiO2 electronic structure remains unclear because only few experimental methods are currently available to probe nanoparticle–water interface. Soft X‐ray absorption spectroscopy has been extensively used to characterize the electronic structure of TiO2 materials, but so far only in vacuum conditions. Here, oxygen K edge and titanium L edge X‐ray absorption spectroscopy characterization of TiO2 nanoparticles measured directly in aqueous dispersion is presented. For this purpose, a new method to probe nanomaterials in liquid using a holey membrane‐based flow cell is introduced. With this approach, the X‐ray transmission of the membrane is increased, especially in the water window, compared to solid membranes.
TiO2 nanoparticles are characterized in situ in aqueous dispersions by soft X‐ray absorption spectroscopy at the oxygen K edge and titanium L edge. For this purpose, a new flow cell method using a holey membrane to increase X‐ray transmission of the membrane is introduced. The influence of hydration on the electronic structure of TiO2 nanoparticles is discussed.</description><identifier>ISSN: 2196-7350</identifier><identifier>EISSN: 2196-7350</identifier><identifier>DOI: 10.1002/admi.201700755</identifier><language>eng</language><publisher>Weinheim: John Wiley & Sons, Inc</publisher><subject>Absorption spectroscopy ; Electronic structure ; Environmental impact ; in situ spectroscopy ; Nanomaterials ; nanoparticle ; Nanoparticles ; Soft x rays ; solid–liquid interface ; Solvation ; Spectrum analysis ; Titanium dioxide ; Titanium oxides ; Water splitting ; X-ray spectroscopy ; X-rays ; X‐ray absorption spectroscopy</subject><ispartof>Advanced materials interfaces, 2017-12, Vol.4 (23), p.n/a</ispartof><rights>2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-6504-072X ; 0000-0003-2337-2520</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadmi.201700755$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadmi.201700755$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Petit, Tristan</creatorcontrib><creatorcontrib>Ren, Jian</creatorcontrib><creatorcontrib>Choudhury, Sneha</creatorcontrib><creatorcontrib>Golnak, Ronny</creatorcontrib><creatorcontrib>Lalithambika, Sreeju S. N.</creatorcontrib><creatorcontrib>Tesch, Marc F.</creatorcontrib><creatorcontrib>Xiao, Jie</creatorcontrib><creatorcontrib>Aziz, Emad F.</creatorcontrib><title>X‐Ray Absorption Spectroscopy of TiO2 Nanoparticles in Water Using a Holey Membrane‐Based Flow Cell</title><title>Advanced materials interfaces</title><description>Many applications of TiO2 nanoparticles, such as photocatalytic water splitting or water remediation, occur in aqueous environment. However, the impact of solvation on TiO2 electronic structure remains unclear because only few experimental methods are currently available to probe nanoparticle–water interface. Soft X‐ray absorption spectroscopy has been extensively used to characterize the electronic structure of TiO2 materials, but so far only in vacuum conditions. Here, oxygen K edge and titanium L edge X‐ray absorption spectroscopy characterization of TiO2 nanoparticles measured directly in aqueous dispersion is presented. For this purpose, a new method to probe nanomaterials in liquid using a holey membrane‐based flow cell is introduced. With this approach, the X‐ray transmission of the membrane is increased, especially in the water window, compared to solid membranes.
TiO2 nanoparticles are characterized in situ in aqueous dispersions by soft X‐ray absorption spectroscopy at the oxygen K edge and titanium L edge. For this purpose, a new flow cell method using a holey membrane to increase X‐ray transmission of the membrane is introduced. The influence of hydration on the electronic structure of TiO2 nanoparticles is discussed.</description><subject>Absorption spectroscopy</subject><subject>Electronic structure</subject><subject>Environmental impact</subject><subject>in situ spectroscopy</subject><subject>Nanomaterials</subject><subject>nanoparticle</subject><subject>Nanoparticles</subject><subject>Soft x rays</subject><subject>solid–liquid interface</subject><subject>Solvation</subject><subject>Spectrum analysis</subject><subject>Titanium dioxide</subject><subject>Titanium oxides</subject><subject>Water splitting</subject><subject>X-ray spectroscopy</subject><subject>X-rays</subject><subject>X‐ray absorption spectroscopy</subject><issn>2196-7350</issn><issn>2196-7350</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpNkEFPwkAQhTdGEwly9byJZ3B2t-2yR0QREpBEIXprtu2ULCndultCevMn-Bv9JZZgiKeZSV7ee_MRcstgwAD4vc52ZsCBSQAZhhekw5mK-lKEcPlvvyY977cAwBhnfCg6ZPPx8_X9qhs6Srx1VW1sSd8qTGtnfWqrhtqcrsyS0xdd2kq72qQFempK-q5rdHTtTbmhmk5tgQ1d4C5xusTW80F7zOiksAc6xqK4IVe5Ljz2_maXrCdPq_G0P18-z8ajeX8jGIR9xVWYDkHLHJkMUo4ZQpKjhAgw0UyLLAlSFolIJYEGMWRM6ETy9iGUKoJAdMndybdy9nOPvo63du_KNjJmSgZhECjJW5U6qQ6mrR1Xzuy0a2IG8RFmfIQZn2HGo8fF7HyJX1C7a2M</recordid><startdate>20171208</startdate><enddate>20171208</enddate><creator>Petit, Tristan</creator><creator>Ren, Jian</creator><creator>Choudhury, Sneha</creator><creator>Golnak, Ronny</creator><creator>Lalithambika, Sreeju S. N.</creator><creator>Tesch, Marc F.</creator><creator>Xiao, Jie</creator><creator>Aziz, Emad F.</creator><general>John Wiley & Sons, Inc</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6504-072X</orcidid><orcidid>https://orcid.org/0000-0003-2337-2520</orcidid></search><sort><creationdate>20171208</creationdate><title>X‐Ray Absorption Spectroscopy of TiO2 Nanoparticles in Water Using a Holey Membrane‐Based Flow Cell</title><author>Petit, Tristan ; Ren, Jian ; Choudhury, Sneha ; Golnak, Ronny ; Lalithambika, Sreeju S. N. ; Tesch, Marc F. ; Xiao, Jie ; Aziz, Emad F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g3105-9295c80a7fe174c2ede0bfe7060eba1a3db4c16369b4a038113ab72001e796043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Absorption spectroscopy</topic><topic>Electronic structure</topic><topic>Environmental impact</topic><topic>in situ spectroscopy</topic><topic>Nanomaterials</topic><topic>nanoparticle</topic><topic>Nanoparticles</topic><topic>Soft x rays</topic><topic>solid–liquid interface</topic><topic>Solvation</topic><topic>Spectrum analysis</topic><topic>Titanium dioxide</topic><topic>Titanium oxides</topic><topic>Water splitting</topic><topic>X-ray spectroscopy</topic><topic>X-rays</topic><topic>X‐ray absorption spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Petit, Tristan</creatorcontrib><creatorcontrib>Ren, Jian</creatorcontrib><creatorcontrib>Choudhury, Sneha</creatorcontrib><creatorcontrib>Golnak, Ronny</creatorcontrib><creatorcontrib>Lalithambika, Sreeju S. N.</creatorcontrib><creatorcontrib>Tesch, Marc F.</creatorcontrib><creatorcontrib>Xiao, Jie</creatorcontrib><creatorcontrib>Aziz, Emad F.</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced materials interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Petit, Tristan</au><au>Ren, Jian</au><au>Choudhury, Sneha</au><au>Golnak, Ronny</au><au>Lalithambika, Sreeju S. N.</au><au>Tesch, Marc F.</au><au>Xiao, Jie</au><au>Aziz, Emad F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>X‐Ray Absorption Spectroscopy of TiO2 Nanoparticles in Water Using a Holey Membrane‐Based Flow Cell</atitle><jtitle>Advanced materials interfaces</jtitle><date>2017-12-08</date><risdate>2017</risdate><volume>4</volume><issue>23</issue><epage>n/a</epage><issn>2196-7350</issn><eissn>2196-7350</eissn><abstract>Many applications of TiO2 nanoparticles, such as photocatalytic water splitting or water remediation, occur in aqueous environment. However, the impact of solvation on TiO2 electronic structure remains unclear because only few experimental methods are currently available to probe nanoparticle–water interface. Soft X‐ray absorption spectroscopy has been extensively used to characterize the electronic structure of TiO2 materials, but so far only in vacuum conditions. Here, oxygen K edge and titanium L edge X‐ray absorption spectroscopy characterization of TiO2 nanoparticles measured directly in aqueous dispersion is presented. For this purpose, a new method to probe nanomaterials in liquid using a holey membrane‐based flow cell is introduced. With this approach, the X‐ray transmission of the membrane is increased, especially in the water window, compared to solid membranes.
TiO2 nanoparticles are characterized in situ in aqueous dispersions by soft X‐ray absorption spectroscopy at the oxygen K edge and titanium L edge. For this purpose, a new flow cell method using a holey membrane to increase X‐ray transmission of the membrane is introduced. The influence of hydration on the electronic structure of TiO2 nanoparticles is discussed.</abstract><cop>Weinheim</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/admi.201700755</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-6504-072X</orcidid><orcidid>https://orcid.org/0000-0003-2337-2520</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2196-7350 |
ispartof | Advanced materials interfaces, 2017-12, Vol.4 (23), p.n/a |
issn | 2196-7350 2196-7350 |
language | eng |
recordid | cdi_proquest_journals_1974544972 |
source | Wiley-Blackwell Journals |
subjects | Absorption spectroscopy Electronic structure Environmental impact in situ spectroscopy Nanomaterials nanoparticle Nanoparticles Soft x rays solid–liquid interface Solvation Spectrum analysis Titanium dioxide Titanium oxides Water splitting X-ray spectroscopy X-rays X‐ray absorption spectroscopy |
title | X‐Ray Absorption Spectroscopy of TiO2 Nanoparticles in Water Using a Holey Membrane‐Based Flow Cell |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T17%3A09%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=X%E2%80%90Ray%20Absorption%20Spectroscopy%20of%20TiO2%20Nanoparticles%20in%20Water%20Using%20a%20Holey%20Membrane%E2%80%90Based%20Flow%20Cell&rft.jtitle=Advanced%20materials%20interfaces&rft.au=Petit,%20Tristan&rft.date=2017-12-08&rft.volume=4&rft.issue=23&rft.epage=n/a&rft.issn=2196-7350&rft.eissn=2196-7350&rft_id=info:doi/10.1002/admi.201700755&rft_dat=%3Cproquest_wiley%3E1974544972%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1974544972&rft_id=info:pmid/&rfr_iscdi=true |