X‐Ray Absorption Spectroscopy of TiO2 Nanoparticles in Water Using a Holey Membrane‐Based Flow Cell

Many applications of TiO2 nanoparticles, such as photocatalytic water splitting or water remediation, occur in aqueous environment. However, the impact of solvation on TiO2 electronic structure remains unclear because only few experimental methods are currently available to probe nanoparticle–water...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials interfaces 2017-12, Vol.4 (23), p.n/a
Hauptverfasser: Petit, Tristan, Ren, Jian, Choudhury, Sneha, Golnak, Ronny, Lalithambika, Sreeju S. N., Tesch, Marc F., Xiao, Jie, Aziz, Emad F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 23
container_start_page
container_title Advanced materials interfaces
container_volume 4
creator Petit, Tristan
Ren, Jian
Choudhury, Sneha
Golnak, Ronny
Lalithambika, Sreeju S. N.
Tesch, Marc F.
Xiao, Jie
Aziz, Emad F.
description Many applications of TiO2 nanoparticles, such as photocatalytic water splitting or water remediation, occur in aqueous environment. However, the impact of solvation on TiO2 electronic structure remains unclear because only few experimental methods are currently available to probe nanoparticle–water interface. Soft X‐ray absorption spectroscopy has been extensively used to characterize the electronic structure of TiO2 materials, but so far only in vacuum conditions. Here, oxygen K edge and titanium L edge X‐ray absorption spectroscopy characterization of TiO2 nanoparticles measured directly in aqueous dispersion is presented. For this purpose, a new method to probe nanomaterials in liquid using a holey membrane‐based flow cell is introduced. With this approach, the X‐ray transmission of the membrane is increased, especially in the water window, compared to solid membranes. TiO2 nanoparticles are characterized in situ in aqueous dispersions by soft X‐ray absorption spectroscopy at the oxygen K edge and titanium L edge. For this purpose, a new flow cell method using a holey membrane to increase X‐ray transmission of the membrane is introduced. The influence of hydration on the electronic structure of TiO2 nanoparticles is discussed.
doi_str_mv 10.1002/admi.201700755
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_1974544972</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1974544972</sourcerecordid><originalsourceid>FETCH-LOGICAL-g3105-9295c80a7fe174c2ede0bfe7060eba1a3db4c16369b4a038113ab72001e796043</originalsourceid><addsrcrecordid>eNpNkEFPwkAQhTdGEwly9byJZ3B2t-2yR0QREpBEIXprtu2ULCndultCevMn-Bv9JZZgiKeZSV7ee_MRcstgwAD4vc52ZsCBSQAZhhekw5mK-lKEcPlvvyY977cAwBhnfCg6ZPPx8_X9qhs6Srx1VW1sSd8qTGtnfWqrhtqcrsyS0xdd2kq72qQFempK-q5rdHTtTbmhmk5tgQ1d4C5xusTW80F7zOiksAc6xqK4IVe5Ljz2_maXrCdPq_G0P18-z8ajeX8jGIR9xVWYDkHLHJkMUo4ZQpKjhAgw0UyLLAlSFolIJYEGMWRM6ETy9iGUKoJAdMndybdy9nOPvo63du_KNjJmSgZhECjJW5U6qQ6mrR1Xzuy0a2IG8RFmfIQZn2HGo8fF7HyJX1C7a2M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1974544972</pqid></control><display><type>article</type><title>X‐Ray Absorption Spectroscopy of TiO2 Nanoparticles in Water Using a Holey Membrane‐Based Flow Cell</title><source>Wiley-Blackwell Journals</source><creator>Petit, Tristan ; Ren, Jian ; Choudhury, Sneha ; Golnak, Ronny ; Lalithambika, Sreeju S. N. ; Tesch, Marc F. ; Xiao, Jie ; Aziz, Emad F.</creator><creatorcontrib>Petit, Tristan ; Ren, Jian ; Choudhury, Sneha ; Golnak, Ronny ; Lalithambika, Sreeju S. N. ; Tesch, Marc F. ; Xiao, Jie ; Aziz, Emad F.</creatorcontrib><description>Many applications of TiO2 nanoparticles, such as photocatalytic water splitting or water remediation, occur in aqueous environment. However, the impact of solvation on TiO2 electronic structure remains unclear because only few experimental methods are currently available to probe nanoparticle–water interface. Soft X‐ray absorption spectroscopy has been extensively used to characterize the electronic structure of TiO2 materials, but so far only in vacuum conditions. Here, oxygen K edge and titanium L edge X‐ray absorption spectroscopy characterization of TiO2 nanoparticles measured directly in aqueous dispersion is presented. For this purpose, a new method to probe nanomaterials in liquid using a holey membrane‐based flow cell is introduced. With this approach, the X‐ray transmission of the membrane is increased, especially in the water window, compared to solid membranes. TiO2 nanoparticles are characterized in situ in aqueous dispersions by soft X‐ray absorption spectroscopy at the oxygen K edge and titanium L edge. For this purpose, a new flow cell method using a holey membrane to increase X‐ray transmission of the membrane is introduced. The influence of hydration on the electronic structure of TiO2 nanoparticles is discussed.</description><identifier>ISSN: 2196-7350</identifier><identifier>EISSN: 2196-7350</identifier><identifier>DOI: 10.1002/admi.201700755</identifier><language>eng</language><publisher>Weinheim: John Wiley &amp; Sons, Inc</publisher><subject>Absorption spectroscopy ; Electronic structure ; Environmental impact ; in situ spectroscopy ; Nanomaterials ; nanoparticle ; Nanoparticles ; Soft x rays ; solid–liquid interface ; Solvation ; Spectrum analysis ; Titanium dioxide ; Titanium oxides ; Water splitting ; X-ray spectroscopy ; X-rays ; X‐ray absorption spectroscopy</subject><ispartof>Advanced materials interfaces, 2017-12, Vol.4 (23), p.n/a</ispartof><rights>2017 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2017 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-6504-072X ; 0000-0003-2337-2520</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadmi.201700755$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadmi.201700755$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Petit, Tristan</creatorcontrib><creatorcontrib>Ren, Jian</creatorcontrib><creatorcontrib>Choudhury, Sneha</creatorcontrib><creatorcontrib>Golnak, Ronny</creatorcontrib><creatorcontrib>Lalithambika, Sreeju S. N.</creatorcontrib><creatorcontrib>Tesch, Marc F.</creatorcontrib><creatorcontrib>Xiao, Jie</creatorcontrib><creatorcontrib>Aziz, Emad F.</creatorcontrib><title>X‐Ray Absorption Spectroscopy of TiO2 Nanoparticles in Water Using a Holey Membrane‐Based Flow Cell</title><title>Advanced materials interfaces</title><description>Many applications of TiO2 nanoparticles, such as photocatalytic water splitting or water remediation, occur in aqueous environment. However, the impact of solvation on TiO2 electronic structure remains unclear because only few experimental methods are currently available to probe nanoparticle–water interface. Soft X‐ray absorption spectroscopy has been extensively used to characterize the electronic structure of TiO2 materials, but so far only in vacuum conditions. Here, oxygen K edge and titanium L edge X‐ray absorption spectroscopy characterization of TiO2 nanoparticles measured directly in aqueous dispersion is presented. For this purpose, a new method to probe nanomaterials in liquid using a holey membrane‐based flow cell is introduced. With this approach, the X‐ray transmission of the membrane is increased, especially in the water window, compared to solid membranes. TiO2 nanoparticles are characterized in situ in aqueous dispersions by soft X‐ray absorption spectroscopy at the oxygen K edge and titanium L edge. For this purpose, a new flow cell method using a holey membrane to increase X‐ray transmission of the membrane is introduced. The influence of hydration on the electronic structure of TiO2 nanoparticles is discussed.</description><subject>Absorption spectroscopy</subject><subject>Electronic structure</subject><subject>Environmental impact</subject><subject>in situ spectroscopy</subject><subject>Nanomaterials</subject><subject>nanoparticle</subject><subject>Nanoparticles</subject><subject>Soft x rays</subject><subject>solid–liquid interface</subject><subject>Solvation</subject><subject>Spectrum analysis</subject><subject>Titanium dioxide</subject><subject>Titanium oxides</subject><subject>Water splitting</subject><subject>X-ray spectroscopy</subject><subject>X-rays</subject><subject>X‐ray absorption spectroscopy</subject><issn>2196-7350</issn><issn>2196-7350</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpNkEFPwkAQhTdGEwly9byJZ3B2t-2yR0QREpBEIXprtu2ULCndultCevMn-Bv9JZZgiKeZSV7ee_MRcstgwAD4vc52ZsCBSQAZhhekw5mK-lKEcPlvvyY977cAwBhnfCg6ZPPx8_X9qhs6Srx1VW1sSd8qTGtnfWqrhtqcrsyS0xdd2kq72qQFempK-q5rdHTtTbmhmk5tgQ1d4C5xusTW80F7zOiksAc6xqK4IVe5Ljz2_maXrCdPq_G0P18-z8ajeX8jGIR9xVWYDkHLHJkMUo4ZQpKjhAgw0UyLLAlSFolIJYEGMWRM6ETy9iGUKoJAdMndybdy9nOPvo63du_KNjJmSgZhECjJW5U6qQ6mrR1Xzuy0a2IG8RFmfIQZn2HGo8fF7HyJX1C7a2M</recordid><startdate>20171208</startdate><enddate>20171208</enddate><creator>Petit, Tristan</creator><creator>Ren, Jian</creator><creator>Choudhury, Sneha</creator><creator>Golnak, Ronny</creator><creator>Lalithambika, Sreeju S. N.</creator><creator>Tesch, Marc F.</creator><creator>Xiao, Jie</creator><creator>Aziz, Emad F.</creator><general>John Wiley &amp; Sons, Inc</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6504-072X</orcidid><orcidid>https://orcid.org/0000-0003-2337-2520</orcidid></search><sort><creationdate>20171208</creationdate><title>X‐Ray Absorption Spectroscopy of TiO2 Nanoparticles in Water Using a Holey Membrane‐Based Flow Cell</title><author>Petit, Tristan ; Ren, Jian ; Choudhury, Sneha ; Golnak, Ronny ; Lalithambika, Sreeju S. N. ; Tesch, Marc F. ; Xiao, Jie ; Aziz, Emad F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g3105-9295c80a7fe174c2ede0bfe7060eba1a3db4c16369b4a038113ab72001e796043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Absorption spectroscopy</topic><topic>Electronic structure</topic><topic>Environmental impact</topic><topic>in situ spectroscopy</topic><topic>Nanomaterials</topic><topic>nanoparticle</topic><topic>Nanoparticles</topic><topic>Soft x rays</topic><topic>solid–liquid interface</topic><topic>Solvation</topic><topic>Spectrum analysis</topic><topic>Titanium dioxide</topic><topic>Titanium oxides</topic><topic>Water splitting</topic><topic>X-ray spectroscopy</topic><topic>X-rays</topic><topic>X‐ray absorption spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Petit, Tristan</creatorcontrib><creatorcontrib>Ren, Jian</creatorcontrib><creatorcontrib>Choudhury, Sneha</creatorcontrib><creatorcontrib>Golnak, Ronny</creatorcontrib><creatorcontrib>Lalithambika, Sreeju S. N.</creatorcontrib><creatorcontrib>Tesch, Marc F.</creatorcontrib><creatorcontrib>Xiao, Jie</creatorcontrib><creatorcontrib>Aziz, Emad F.</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced materials interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Petit, Tristan</au><au>Ren, Jian</au><au>Choudhury, Sneha</au><au>Golnak, Ronny</au><au>Lalithambika, Sreeju S. N.</au><au>Tesch, Marc F.</au><au>Xiao, Jie</au><au>Aziz, Emad F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>X‐Ray Absorption Spectroscopy of TiO2 Nanoparticles in Water Using a Holey Membrane‐Based Flow Cell</atitle><jtitle>Advanced materials interfaces</jtitle><date>2017-12-08</date><risdate>2017</risdate><volume>4</volume><issue>23</issue><epage>n/a</epage><issn>2196-7350</issn><eissn>2196-7350</eissn><abstract>Many applications of TiO2 nanoparticles, such as photocatalytic water splitting or water remediation, occur in aqueous environment. However, the impact of solvation on TiO2 electronic structure remains unclear because only few experimental methods are currently available to probe nanoparticle–water interface. Soft X‐ray absorption spectroscopy has been extensively used to characterize the electronic structure of TiO2 materials, but so far only in vacuum conditions. Here, oxygen K edge and titanium L edge X‐ray absorption spectroscopy characterization of TiO2 nanoparticles measured directly in aqueous dispersion is presented. For this purpose, a new method to probe nanomaterials in liquid using a holey membrane‐based flow cell is introduced. With this approach, the X‐ray transmission of the membrane is increased, especially in the water window, compared to solid membranes. TiO2 nanoparticles are characterized in situ in aqueous dispersions by soft X‐ray absorption spectroscopy at the oxygen K edge and titanium L edge. For this purpose, a new flow cell method using a holey membrane to increase X‐ray transmission of the membrane is introduced. The influence of hydration on the electronic structure of TiO2 nanoparticles is discussed.</abstract><cop>Weinheim</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/admi.201700755</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-6504-072X</orcidid><orcidid>https://orcid.org/0000-0003-2337-2520</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2196-7350
ispartof Advanced materials interfaces, 2017-12, Vol.4 (23), p.n/a
issn 2196-7350
2196-7350
language eng
recordid cdi_proquest_journals_1974544972
source Wiley-Blackwell Journals
subjects Absorption spectroscopy
Electronic structure
Environmental impact
in situ spectroscopy
Nanomaterials
nanoparticle
Nanoparticles
Soft x rays
solid–liquid interface
Solvation
Spectrum analysis
Titanium dioxide
Titanium oxides
Water splitting
X-ray spectroscopy
X-rays
X‐ray absorption spectroscopy
title X‐Ray Absorption Spectroscopy of TiO2 Nanoparticles in Water Using a Holey Membrane‐Based Flow Cell
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T17%3A09%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=X%E2%80%90Ray%20Absorption%20Spectroscopy%20of%20TiO2%20Nanoparticles%20in%20Water%20Using%20a%20Holey%20Membrane%E2%80%90Based%20Flow%20Cell&rft.jtitle=Advanced%20materials%20interfaces&rft.au=Petit,%20Tristan&rft.date=2017-12-08&rft.volume=4&rft.issue=23&rft.epage=n/a&rft.issn=2196-7350&rft.eissn=2196-7350&rft_id=info:doi/10.1002/admi.201700755&rft_dat=%3Cproquest_wiley%3E1974544972%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1974544972&rft_id=info:pmid/&rfr_iscdi=true