Highly improved sensibility and selectivity ethanol sensor of mesoporous Fe-doped NiO nanowires

In this paper, nickel oxides (NiO) and iron (Fe)-doped NiO nanowires (NWs) with the various doping content (from 1 to 9 at%) were synthesized by using SBA-15 templates with the nanocasting method. All samples were synthesized in the same conditions and exhibited the same mesoporous-structures, unifo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology 2017-12, Vol.19 (12), p.1-11, Article 396
Hauptverfasser: Li, X. Q., Wei, J. Q., Xu, J. C., Jin, H. X., Jin, D. F., Peng, X. L., Hong, B., Li, J., Yang, Y. T., Ge, H. L., Wang, Xinqing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue 12
container_start_page 1
container_title Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology
container_volume 19
creator Li, X. Q.
Wei, J. Q.
Xu, J. C.
Jin, H. X.
Jin, D. F.
Peng, X. L.
Hong, B.
Li, J.
Yang, Y. T.
Ge, H. L.
Wang, Xinqing
description In this paper, nickel oxides (NiO) and iron (Fe)-doped NiO nanowires (NWs) with the various doping content (from 1 to 9 at%) were synthesized by using SBA-15 templates with the nanocasting method. All samples were synthesized in the same conditions and exhibited the same mesoporous-structures, uniform diameter, and defects. Mesoporous-structures with high surface area created more active sites for the adsorption of oxygen on the surface of all samples, resulting in the smaller surface resistance in air. The impurity energy levels from the donor Fe-doping provided electrons to neutralize the holes of p-type Fe-doped NiO NWs, which greatly enhanced the total resistance. The comparative gas-sensing study between NiO NWs and Fe-doped NiO NWs indicated that the high-valence donor Fe-doping obviously improved the ethanol sensitivity and selectivity for Fe-doped NiO NWs. And Ni 0.94 Fe 0.06 O 1.03 NWs sensor presented the highest sensitivity of 14.30 toward ethanol gas at 320 °C for the high-valence metal-doping.
doi_str_mv 10.1007/s11051-017-4089-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1974530835</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1974530835</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-862967d589c764cd7671e219cf87559138a2d939e4dd4a95a5fd6c8bd8857f223</originalsourceid><addsrcrecordid>eNp1UM9PwyAUJkYT5_QP8EbiGQVaChzN4pzJ4i6aeCOs0I2lKxXamf73UuvBi6f3XvL9eh8AtwTfE4z5QyQEM4Iw4SjHQqLhDMwI4xQJWXycpz0TAmFe5JfgKsYDxqSgks6AWrndvh6gO7bBn6yB0TbRbV3tugHqZrxrW3buNN622-vG1z8YH6Cv4NFG3_rg-wiXFhnfJoVXt4FNwn25YOM1uKh0He3N75yD9-XT22KF1pvnl8XjGpUZyzokUpqCGyZkmTKWhhecWEpkWQnOmEzpNTUykzY3JteSaVaZohRbIwTjFaXZHNxNuumNz97GTh18H5pkqYjkOcuwSEZzQCZUGXyMwVaqDe6ow6AIVmOPaupRpR7V2KMaEodOnJiwzc6GP8r_kr4BIwJ3HA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1974530835</pqid></control><display><type>article</type><title>Highly improved sensibility and selectivity ethanol sensor of mesoporous Fe-doped NiO nanowires</title><source>SpringerLink Journals - AutoHoldings</source><creator>Li, X. Q. ; Wei, J. Q. ; Xu, J. C. ; Jin, H. X. ; Jin, D. F. ; Peng, X. L. ; Hong, B. ; Li, J. ; Yang, Y. T. ; Ge, H. L. ; Wang, Xinqing</creator><creatorcontrib>Li, X. Q. ; Wei, J. Q. ; Xu, J. C. ; Jin, H. X. ; Jin, D. F. ; Peng, X. L. ; Hong, B. ; Li, J. ; Yang, Y. T. ; Ge, H. L. ; Wang, Xinqing</creatorcontrib><description>In this paper, nickel oxides (NiO) and iron (Fe)-doped NiO nanowires (NWs) with the various doping content (from 1 to 9 at%) were synthesized by using SBA-15 templates with the nanocasting method. All samples were synthesized in the same conditions and exhibited the same mesoporous-structures, uniform diameter, and defects. Mesoporous-structures with high surface area created more active sites for the adsorption of oxygen on the surface of all samples, resulting in the smaller surface resistance in air. The impurity energy levels from the donor Fe-doping provided electrons to neutralize the holes of p-type Fe-doped NiO NWs, which greatly enhanced the total resistance. The comparative gas-sensing study between NiO NWs and Fe-doped NiO NWs indicated that the high-valence donor Fe-doping obviously improved the ethanol sensitivity and selectivity for Fe-doped NiO NWs. And Ni 0.94 Fe 0.06 O 1.03 NWs sensor presented the highest sensitivity of 14.30 toward ethanol gas at 320 °C for the high-valence metal-doping.</description><identifier>ISSN: 1388-0764</identifier><identifier>EISSN: 1572-896X</identifier><identifier>DOI: 10.1007/s11051-017-4089-y</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Defects ; Doping ; Energy levels ; Ethanol ; Inorganic Chemistry ; Iron ; Lasers ; Materials Science ; Nanoparticles ; Nanotechnology ; Nanowires ; Nickel ; Nickel oxides ; Optical Devices ; Optics ; Oxides ; Photonics ; Physical Chemistry ; Research Paper ; Selectivity ; Sensitivity ; Surface resistance ; Synthesis</subject><ispartof>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology, 2017-12, Vol.19 (12), p.1-11, Article 396</ispartof><rights>Springer Science+Business Media B.V., part of Springer Nature 2017</rights><rights>Journal of Nanoparticle Research is a copyright of Springer, (2017). All Rights Reserved.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-862967d589c764cd7671e219cf87559138a2d939e4dd4a95a5fd6c8bd8857f223</citedby><cites>FETCH-LOGICAL-c353t-862967d589c764cd7671e219cf87559138a2d939e4dd4a95a5fd6c8bd8857f223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11051-017-4089-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11051-017-4089-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Li, X. Q.</creatorcontrib><creatorcontrib>Wei, J. Q.</creatorcontrib><creatorcontrib>Xu, J. C.</creatorcontrib><creatorcontrib>Jin, H. X.</creatorcontrib><creatorcontrib>Jin, D. F.</creatorcontrib><creatorcontrib>Peng, X. L.</creatorcontrib><creatorcontrib>Hong, B.</creatorcontrib><creatorcontrib>Li, J.</creatorcontrib><creatorcontrib>Yang, Y. T.</creatorcontrib><creatorcontrib>Ge, H. L.</creatorcontrib><creatorcontrib>Wang, Xinqing</creatorcontrib><title>Highly improved sensibility and selectivity ethanol sensor of mesoporous Fe-doped NiO nanowires</title><title>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology</title><addtitle>J Nanopart Res</addtitle><description>In this paper, nickel oxides (NiO) and iron (Fe)-doped NiO nanowires (NWs) with the various doping content (from 1 to 9 at%) were synthesized by using SBA-15 templates with the nanocasting method. All samples were synthesized in the same conditions and exhibited the same mesoporous-structures, uniform diameter, and defects. Mesoporous-structures with high surface area created more active sites for the adsorption of oxygen on the surface of all samples, resulting in the smaller surface resistance in air. The impurity energy levels from the donor Fe-doping provided electrons to neutralize the holes of p-type Fe-doped NiO NWs, which greatly enhanced the total resistance. The comparative gas-sensing study between NiO NWs and Fe-doped NiO NWs indicated that the high-valence donor Fe-doping obviously improved the ethanol sensitivity and selectivity for Fe-doped NiO NWs. And Ni 0.94 Fe 0.06 O 1.03 NWs sensor presented the highest sensitivity of 14.30 toward ethanol gas at 320 °C for the high-valence metal-doping.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Defects</subject><subject>Doping</subject><subject>Energy levels</subject><subject>Ethanol</subject><subject>Inorganic Chemistry</subject><subject>Iron</subject><subject>Lasers</subject><subject>Materials Science</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Nanowires</subject><subject>Nickel</subject><subject>Nickel oxides</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Oxides</subject><subject>Photonics</subject><subject>Physical Chemistry</subject><subject>Research Paper</subject><subject>Selectivity</subject><subject>Sensitivity</subject><subject>Surface resistance</subject><subject>Synthesis</subject><issn>1388-0764</issn><issn>1572-896X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1UM9PwyAUJkYT5_QP8EbiGQVaChzN4pzJ4i6aeCOs0I2lKxXamf73UuvBi6f3XvL9eh8AtwTfE4z5QyQEM4Iw4SjHQqLhDMwI4xQJWXycpz0TAmFe5JfgKsYDxqSgks6AWrndvh6gO7bBn6yB0TbRbV3tugHqZrxrW3buNN622-vG1z8YH6Cv4NFG3_rg-wiXFhnfJoVXt4FNwn25YOM1uKh0He3N75yD9-XT22KF1pvnl8XjGpUZyzokUpqCGyZkmTKWhhecWEpkWQnOmEzpNTUykzY3JteSaVaZohRbIwTjFaXZHNxNuumNz97GTh18H5pkqYjkOcuwSEZzQCZUGXyMwVaqDe6ow6AIVmOPaupRpR7V2KMaEodOnJiwzc6GP8r_kr4BIwJ3HA</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Li, X. Q.</creator><creator>Wei, J. Q.</creator><creator>Xu, J. C.</creator><creator>Jin, H. X.</creator><creator>Jin, D. F.</creator><creator>Peng, X. L.</creator><creator>Hong, B.</creator><creator>Li, J.</creator><creator>Yang, Y. T.</creator><creator>Ge, H. L.</creator><creator>Wang, Xinqing</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20171201</creationdate><title>Highly improved sensibility and selectivity ethanol sensor of mesoporous Fe-doped NiO nanowires</title><author>Li, X. Q. ; Wei, J. Q. ; Xu, J. C. ; Jin, H. X. ; Jin, D. F. ; Peng, X. L. ; Hong, B. ; Li, J. ; Yang, Y. T. ; Ge, H. L. ; Wang, Xinqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-862967d589c764cd7671e219cf87559138a2d939e4dd4a95a5fd6c8bd8857f223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Defects</topic><topic>Doping</topic><topic>Energy levels</topic><topic>Ethanol</topic><topic>Inorganic Chemistry</topic><topic>Iron</topic><topic>Lasers</topic><topic>Materials Science</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Nanowires</topic><topic>Nickel</topic><topic>Nickel oxides</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Oxides</topic><topic>Photonics</topic><topic>Physical Chemistry</topic><topic>Research Paper</topic><topic>Selectivity</topic><topic>Sensitivity</topic><topic>Surface resistance</topic><topic>Synthesis</topic><toplevel>online_resources</toplevel><creatorcontrib>Li, X. Q.</creatorcontrib><creatorcontrib>Wei, J. Q.</creatorcontrib><creatorcontrib>Xu, J. C.</creatorcontrib><creatorcontrib>Jin, H. X.</creatorcontrib><creatorcontrib>Jin, D. F.</creatorcontrib><creatorcontrib>Peng, X. L.</creatorcontrib><creatorcontrib>Hong, B.</creatorcontrib><creatorcontrib>Li, J.</creatorcontrib><creatorcontrib>Yang, Y. T.</creatorcontrib><creatorcontrib>Ge, H. L.</creatorcontrib><creatorcontrib>Wang, Xinqing</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, X. Q.</au><au>Wei, J. Q.</au><au>Xu, J. C.</au><au>Jin, H. X.</au><au>Jin, D. F.</au><au>Peng, X. L.</au><au>Hong, B.</au><au>Li, J.</au><au>Yang, Y. T.</au><au>Ge, H. L.</au><au>Wang, Xinqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly improved sensibility and selectivity ethanol sensor of mesoporous Fe-doped NiO nanowires</atitle><jtitle>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology</jtitle><stitle>J Nanopart Res</stitle><date>2017-12-01</date><risdate>2017</risdate><volume>19</volume><issue>12</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><artnum>396</artnum><issn>1388-0764</issn><eissn>1572-896X</eissn><abstract>In this paper, nickel oxides (NiO) and iron (Fe)-doped NiO nanowires (NWs) with the various doping content (from 1 to 9 at%) were synthesized by using SBA-15 templates with the nanocasting method. All samples were synthesized in the same conditions and exhibited the same mesoporous-structures, uniform diameter, and defects. Mesoporous-structures with high surface area created more active sites for the adsorption of oxygen on the surface of all samples, resulting in the smaller surface resistance in air. The impurity energy levels from the donor Fe-doping provided electrons to neutralize the holes of p-type Fe-doped NiO NWs, which greatly enhanced the total resistance. The comparative gas-sensing study between NiO NWs and Fe-doped NiO NWs indicated that the high-valence donor Fe-doping obviously improved the ethanol sensitivity and selectivity for Fe-doped NiO NWs. And Ni 0.94 Fe 0.06 O 1.03 NWs sensor presented the highest sensitivity of 14.30 toward ethanol gas at 320 °C for the high-valence metal-doping.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11051-017-4089-y</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1388-0764
ispartof Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology, 2017-12, Vol.19 (12), p.1-11, Article 396
issn 1388-0764
1572-896X
language eng
recordid cdi_proquest_journals_1974530835
source SpringerLink Journals - AutoHoldings
subjects Characterization and Evaluation of Materials
Chemistry and Materials Science
Defects
Doping
Energy levels
Ethanol
Inorganic Chemistry
Iron
Lasers
Materials Science
Nanoparticles
Nanotechnology
Nanowires
Nickel
Nickel oxides
Optical Devices
Optics
Oxides
Photonics
Physical Chemistry
Research Paper
Selectivity
Sensitivity
Surface resistance
Synthesis
title Highly improved sensibility and selectivity ethanol sensor of mesoporous Fe-doped NiO nanowires
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T18%3A43%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20improved%20sensibility%20and%20selectivity%20ethanol%20sensor%20of%20mesoporous%20Fe-doped%20NiO%20nanowires&rft.jtitle=Journal%20of%20nanoparticle%20research%20:%20an%20interdisciplinary%20forum%20for%20nanoscale%20science%20and%20technology&rft.au=Li,%20X.%20Q.&rft.date=2017-12-01&rft.volume=19&rft.issue=12&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.artnum=396&rft.issn=1388-0764&rft.eissn=1572-896X&rft_id=info:doi/10.1007/s11051-017-4089-y&rft_dat=%3Cproquest_cross%3E1974530835%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1974530835&rft_id=info:pmid/&rfr_iscdi=true