MIMO Sliding Mode Controller for Gait Exoskeleton Driven by Pneumatic Muscles

In the past decade, pneumatic muscle (PM) actuated rehabilitation robotic devices have been widely researched, mainly due to the actuators' intrinsic compliance and high power to weight ratio. However, the PMs are highly nonlinear and subject to hysteresis behavior. Hence, robust trajectory and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on control systems technology 2018-01, Vol.26 (1), p.274-281
Hauptverfasser: Jinghui Cao, Sheng Quan Xie, Das, Raj
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 281
container_issue 1
container_start_page 274
container_title IEEE transactions on control systems technology
container_volume 26
creator Jinghui Cao
Sheng Quan Xie
Das, Raj
description In the past decade, pneumatic muscle (PM) actuated rehabilitation robotic devices have been widely researched, mainly due to the actuators' intrinsic compliance and high power to weight ratio. However, the PMs are highly nonlinear and subject to hysteresis behavior. Hence, robust trajectory and compliance control are important to realize different training strategies and modes for improving the effectiveness of the rehabilitation robots. This paper presents a multi-input-multioutput sliding mode controller, which is developed to simultaneously control the angular trajectory and compliance of the knee joint mechanism of a gait rehabilitation exoskeleton. Experimental results indicate good multivariable tracking performance of this controller, which provides a good foundation for the further development of assist-as-needed training strategies in gait rehabilitation.
doi_str_mv 10.1109/TCST.2017.2654424
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1974442898</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7837685</ieee_id><sourcerecordid>1974442898</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-c411aaa7cf776952035fa95ef50a795d9fc419f9db548701b6aa1866debda6523</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKc_QLwJeN2ZNM3XpdQ5BysTNq9D2p5IZ9fMpBP37-3Y8Oqci-d9D-dB6J6SCaVEP63z1XqSEionqeBZlmYXaEQ5VwlRgl8OOxEsEZyJa3QT44YQmvFUjlBRzIslXrVN3XSfuPA14Nx3ffBtCwE7H_DMNj2e_vr4BS30vsMvofmBDpcH_N7Bfmv7psLFPlYtxFt05Wwb4e48x-jjdbrO35LFcjbPnxdJxZjokyqj1ForKyel0DwljDurOThOrNS81m4gtNN1yTMlCS2FtVQJUUNZW8FTNkaPp95d8N97iL3Z-H3ohpOGapkN_yutBoqeqCr4GAM4swvN1oaDocQcrZmjNXO0Zs7WhszDKdMAwD8vFZNCcfYHD8VoBQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1974442898</pqid></control><display><type>article</type><title>MIMO Sliding Mode Controller for Gait Exoskeleton Driven by Pneumatic Muscles</title><source>IEEE Electronic Library (IEL)</source><creator>Jinghui Cao ; Sheng Quan Xie ; Das, Raj</creator><creatorcontrib>Jinghui Cao ; Sheng Quan Xie ; Das, Raj</creatorcontrib><description>In the past decade, pneumatic muscle (PM) actuated rehabilitation robotic devices have been widely researched, mainly due to the actuators' intrinsic compliance and high power to weight ratio. However, the PMs are highly nonlinear and subject to hysteresis behavior. Hence, robust trajectory and compliance control are important to realize different training strategies and modes for improving the effectiveness of the rehabilitation robots. This paper presents a multi-input-multioutput sliding mode controller, which is developed to simultaneously control the angular trajectory and compliance of the knee joint mechanism of a gait rehabilitation exoskeleton. Experimental results indicate good multivariable tracking performance of this controller, which provides a good foundation for the further development of assist-as-needed training strategies in gait rehabilitation.</description><identifier>ISSN: 1063-6536</identifier><identifier>EISSN: 1558-0865</identifier><identifier>DOI: 10.1109/TCST.2017.2654424</identifier><identifier>CODEN: IETTE2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Actuators ; Biological system modeling ; Compliance ; Exoskeletons ; Force ; Gait ; Gait rehabilitation ; Knee ; MIMO (control systems) ; Multivariable control ; Muscles ; pneumatic muscle (PM) actuators ; Rehabilitation ; Rehabilitation robots ; Robots ; Robust control ; sliding mode (SM) control ; Sliding mode control ; Tracking control ; Training ; Trajectory ; Trajectory control</subject><ispartof>IEEE transactions on control systems technology, 2018-01, Vol.26 (1), p.274-281</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-c411aaa7cf776952035fa95ef50a795d9fc419f9db548701b6aa1866debda6523</citedby><cites>FETCH-LOGICAL-c336t-c411aaa7cf776952035fa95ef50a795d9fc419f9db548701b6aa1866debda6523</cites><orcidid>0000-0002-7266-8822</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7837685$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7837685$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jinghui Cao</creatorcontrib><creatorcontrib>Sheng Quan Xie</creatorcontrib><creatorcontrib>Das, Raj</creatorcontrib><title>MIMO Sliding Mode Controller for Gait Exoskeleton Driven by Pneumatic Muscles</title><title>IEEE transactions on control systems technology</title><addtitle>TCST</addtitle><description>In the past decade, pneumatic muscle (PM) actuated rehabilitation robotic devices have been widely researched, mainly due to the actuators' intrinsic compliance and high power to weight ratio. However, the PMs are highly nonlinear and subject to hysteresis behavior. Hence, robust trajectory and compliance control are important to realize different training strategies and modes for improving the effectiveness of the rehabilitation robots. This paper presents a multi-input-multioutput sliding mode controller, which is developed to simultaneously control the angular trajectory and compliance of the knee joint mechanism of a gait rehabilitation exoskeleton. Experimental results indicate good multivariable tracking performance of this controller, which provides a good foundation for the further development of assist-as-needed training strategies in gait rehabilitation.</description><subject>Actuators</subject><subject>Biological system modeling</subject><subject>Compliance</subject><subject>Exoskeletons</subject><subject>Force</subject><subject>Gait</subject><subject>Gait rehabilitation</subject><subject>Knee</subject><subject>MIMO (control systems)</subject><subject>Multivariable control</subject><subject>Muscles</subject><subject>pneumatic muscle (PM) actuators</subject><subject>Rehabilitation</subject><subject>Rehabilitation robots</subject><subject>Robots</subject><subject>Robust control</subject><subject>sliding mode (SM) control</subject><subject>Sliding mode control</subject><subject>Tracking control</subject><subject>Training</subject><subject>Trajectory</subject><subject>Trajectory control</subject><issn>1063-6536</issn><issn>1558-0865</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAUhoMoOKc_QLwJeN2ZNM3XpdQ5BysTNq9D2p5IZ9fMpBP37-3Y8Oqci-d9D-dB6J6SCaVEP63z1XqSEionqeBZlmYXaEQ5VwlRgl8OOxEsEZyJa3QT44YQmvFUjlBRzIslXrVN3XSfuPA14Nx3ffBtCwE7H_DMNj2e_vr4BS30vsMvofmBDpcH_N7Bfmv7psLFPlYtxFt05Wwb4e48x-jjdbrO35LFcjbPnxdJxZjokyqj1ForKyel0DwljDurOThOrNS81m4gtNN1yTMlCS2FtVQJUUNZW8FTNkaPp95d8N97iL3Z-H3ohpOGapkN_yutBoqeqCr4GAM4swvN1oaDocQcrZmjNXO0Zs7WhszDKdMAwD8vFZNCcfYHD8VoBQ</recordid><startdate>201801</startdate><enddate>201801</enddate><creator>Jinghui Cao</creator><creator>Sheng Quan Xie</creator><creator>Das, Raj</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7266-8822</orcidid></search><sort><creationdate>201801</creationdate><title>MIMO Sliding Mode Controller for Gait Exoskeleton Driven by Pneumatic Muscles</title><author>Jinghui Cao ; Sheng Quan Xie ; Das, Raj</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-c411aaa7cf776952035fa95ef50a795d9fc419f9db548701b6aa1866debda6523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Actuators</topic><topic>Biological system modeling</topic><topic>Compliance</topic><topic>Exoskeletons</topic><topic>Force</topic><topic>Gait</topic><topic>Gait rehabilitation</topic><topic>Knee</topic><topic>MIMO (control systems)</topic><topic>Multivariable control</topic><topic>Muscles</topic><topic>pneumatic muscle (PM) actuators</topic><topic>Rehabilitation</topic><topic>Rehabilitation robots</topic><topic>Robots</topic><topic>Robust control</topic><topic>sliding mode (SM) control</topic><topic>Sliding mode control</topic><topic>Tracking control</topic><topic>Training</topic><topic>Trajectory</topic><topic>Trajectory control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jinghui Cao</creatorcontrib><creatorcontrib>Sheng Quan Xie</creatorcontrib><creatorcontrib>Das, Raj</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on control systems technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jinghui Cao</au><au>Sheng Quan Xie</au><au>Das, Raj</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MIMO Sliding Mode Controller for Gait Exoskeleton Driven by Pneumatic Muscles</atitle><jtitle>IEEE transactions on control systems technology</jtitle><stitle>TCST</stitle><date>2018-01</date><risdate>2018</risdate><volume>26</volume><issue>1</issue><spage>274</spage><epage>281</epage><pages>274-281</pages><issn>1063-6536</issn><eissn>1558-0865</eissn><coden>IETTE2</coden><abstract>In the past decade, pneumatic muscle (PM) actuated rehabilitation robotic devices have been widely researched, mainly due to the actuators' intrinsic compliance and high power to weight ratio. However, the PMs are highly nonlinear and subject to hysteresis behavior. Hence, robust trajectory and compliance control are important to realize different training strategies and modes for improving the effectiveness of the rehabilitation robots. This paper presents a multi-input-multioutput sliding mode controller, which is developed to simultaneously control the angular trajectory and compliance of the knee joint mechanism of a gait rehabilitation exoskeleton. Experimental results indicate good multivariable tracking performance of this controller, which provides a good foundation for the further development of assist-as-needed training strategies in gait rehabilitation.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCST.2017.2654424</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-7266-8822</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6536
ispartof IEEE transactions on control systems technology, 2018-01, Vol.26 (1), p.274-281
issn 1063-6536
1558-0865
language eng
recordid cdi_proquest_journals_1974442898
source IEEE Electronic Library (IEL)
subjects Actuators
Biological system modeling
Compliance
Exoskeletons
Force
Gait
Gait rehabilitation
Knee
MIMO (control systems)
Multivariable control
Muscles
pneumatic muscle (PM) actuators
Rehabilitation
Rehabilitation robots
Robots
Robust control
sliding mode (SM) control
Sliding mode control
Tracking control
Training
Trajectory
Trajectory control
title MIMO Sliding Mode Controller for Gait Exoskeleton Driven by Pneumatic Muscles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T05%3A02%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MIMO%20Sliding%20Mode%20Controller%20for%20Gait%20Exoskeleton%20Driven%20by%20Pneumatic%20Muscles&rft.jtitle=IEEE%20transactions%20on%20control%20systems%20technology&rft.au=Jinghui%20Cao&rft.date=2018-01&rft.volume=26&rft.issue=1&rft.spage=274&rft.epage=281&rft.pages=274-281&rft.issn=1063-6536&rft.eissn=1558-0865&rft.coden=IETTE2&rft_id=info:doi/10.1109/TCST.2017.2654424&rft_dat=%3Cproquest_RIE%3E1974442898%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1974442898&rft_id=info:pmid/&rft_ieee_id=7837685&rfr_iscdi=true