MIMO Sliding Mode Controller for Gait Exoskeleton Driven by Pneumatic Muscles
In the past decade, pneumatic muscle (PM) actuated rehabilitation robotic devices have been widely researched, mainly due to the actuators' intrinsic compliance and high power to weight ratio. However, the PMs are highly nonlinear and subject to hysteresis behavior. Hence, robust trajectory and...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on control systems technology 2018-01, Vol.26 (1), p.274-281 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 281 |
---|---|
container_issue | 1 |
container_start_page | 274 |
container_title | IEEE transactions on control systems technology |
container_volume | 26 |
creator | Jinghui Cao Sheng Quan Xie Das, Raj |
description | In the past decade, pneumatic muscle (PM) actuated rehabilitation robotic devices have been widely researched, mainly due to the actuators' intrinsic compliance and high power to weight ratio. However, the PMs are highly nonlinear and subject to hysteresis behavior. Hence, robust trajectory and compliance control are important to realize different training strategies and modes for improving the effectiveness of the rehabilitation robots. This paper presents a multi-input-multioutput sliding mode controller, which is developed to simultaneously control the angular trajectory and compliance of the knee joint mechanism of a gait rehabilitation exoskeleton. Experimental results indicate good multivariable tracking performance of this controller, which provides a good foundation for the further development of assist-as-needed training strategies in gait rehabilitation. |
doi_str_mv | 10.1109/TCST.2017.2654424 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1974442898</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7837685</ieee_id><sourcerecordid>1974442898</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-c411aaa7cf776952035fa95ef50a795d9fc419f9db548701b6aa1866debda6523</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKc_QLwJeN2ZNM3XpdQ5BysTNq9D2p5IZ9fMpBP37-3Y8Oqci-d9D-dB6J6SCaVEP63z1XqSEionqeBZlmYXaEQ5VwlRgl8OOxEsEZyJa3QT44YQmvFUjlBRzIslXrVN3XSfuPA14Nx3ffBtCwE7H_DMNj2e_vr4BS30vsMvofmBDpcH_N7Bfmv7psLFPlYtxFt05Wwb4e48x-jjdbrO35LFcjbPnxdJxZjokyqj1ForKyel0DwljDurOThOrNS81m4gtNN1yTMlCS2FtVQJUUNZW8FTNkaPp95d8N97iL3Z-H3ohpOGapkN_yutBoqeqCr4GAM4swvN1oaDocQcrZmjNXO0Zs7WhszDKdMAwD8vFZNCcfYHD8VoBQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1974442898</pqid></control><display><type>article</type><title>MIMO Sliding Mode Controller for Gait Exoskeleton Driven by Pneumatic Muscles</title><source>IEEE Electronic Library (IEL)</source><creator>Jinghui Cao ; Sheng Quan Xie ; Das, Raj</creator><creatorcontrib>Jinghui Cao ; Sheng Quan Xie ; Das, Raj</creatorcontrib><description>In the past decade, pneumatic muscle (PM) actuated rehabilitation robotic devices have been widely researched, mainly due to the actuators' intrinsic compliance and high power to weight ratio. However, the PMs are highly nonlinear and subject to hysteresis behavior. Hence, robust trajectory and compliance control are important to realize different training strategies and modes for improving the effectiveness of the rehabilitation robots. This paper presents a multi-input-multioutput sliding mode controller, which is developed to simultaneously control the angular trajectory and compliance of the knee joint mechanism of a gait rehabilitation exoskeleton. Experimental results indicate good multivariable tracking performance of this controller, which provides a good foundation for the further development of assist-as-needed training strategies in gait rehabilitation.</description><identifier>ISSN: 1063-6536</identifier><identifier>EISSN: 1558-0865</identifier><identifier>DOI: 10.1109/TCST.2017.2654424</identifier><identifier>CODEN: IETTE2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Actuators ; Biological system modeling ; Compliance ; Exoskeletons ; Force ; Gait ; Gait rehabilitation ; Knee ; MIMO (control systems) ; Multivariable control ; Muscles ; pneumatic muscle (PM) actuators ; Rehabilitation ; Rehabilitation robots ; Robots ; Robust control ; sliding mode (SM) control ; Sliding mode control ; Tracking control ; Training ; Trajectory ; Trajectory control</subject><ispartof>IEEE transactions on control systems technology, 2018-01, Vol.26 (1), p.274-281</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-c411aaa7cf776952035fa95ef50a795d9fc419f9db548701b6aa1866debda6523</citedby><cites>FETCH-LOGICAL-c336t-c411aaa7cf776952035fa95ef50a795d9fc419f9db548701b6aa1866debda6523</cites><orcidid>0000-0002-7266-8822</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7837685$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7837685$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jinghui Cao</creatorcontrib><creatorcontrib>Sheng Quan Xie</creatorcontrib><creatorcontrib>Das, Raj</creatorcontrib><title>MIMO Sliding Mode Controller for Gait Exoskeleton Driven by Pneumatic Muscles</title><title>IEEE transactions on control systems technology</title><addtitle>TCST</addtitle><description>In the past decade, pneumatic muscle (PM) actuated rehabilitation robotic devices have been widely researched, mainly due to the actuators' intrinsic compliance and high power to weight ratio. However, the PMs are highly nonlinear and subject to hysteresis behavior. Hence, robust trajectory and compliance control are important to realize different training strategies and modes for improving the effectiveness of the rehabilitation robots. This paper presents a multi-input-multioutput sliding mode controller, which is developed to simultaneously control the angular trajectory and compliance of the knee joint mechanism of a gait rehabilitation exoskeleton. Experimental results indicate good multivariable tracking performance of this controller, which provides a good foundation for the further development of assist-as-needed training strategies in gait rehabilitation.</description><subject>Actuators</subject><subject>Biological system modeling</subject><subject>Compliance</subject><subject>Exoskeletons</subject><subject>Force</subject><subject>Gait</subject><subject>Gait rehabilitation</subject><subject>Knee</subject><subject>MIMO (control systems)</subject><subject>Multivariable control</subject><subject>Muscles</subject><subject>pneumatic muscle (PM) actuators</subject><subject>Rehabilitation</subject><subject>Rehabilitation robots</subject><subject>Robots</subject><subject>Robust control</subject><subject>sliding mode (SM) control</subject><subject>Sliding mode control</subject><subject>Tracking control</subject><subject>Training</subject><subject>Trajectory</subject><subject>Trajectory control</subject><issn>1063-6536</issn><issn>1558-0865</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAUhoMoOKc_QLwJeN2ZNM3XpdQ5BysTNq9D2p5IZ9fMpBP37-3Y8Oqci-d9D-dB6J6SCaVEP63z1XqSEionqeBZlmYXaEQ5VwlRgl8OOxEsEZyJa3QT44YQmvFUjlBRzIslXrVN3XSfuPA14Nx3ffBtCwE7H_DMNj2e_vr4BS30vsMvofmBDpcH_N7Bfmv7psLFPlYtxFt05Wwb4e48x-jjdbrO35LFcjbPnxdJxZjokyqj1ForKyel0DwljDurOThOrNS81m4gtNN1yTMlCS2FtVQJUUNZW8FTNkaPp95d8N97iL3Z-H3ohpOGapkN_yutBoqeqCr4GAM4swvN1oaDocQcrZmjNXO0Zs7WhszDKdMAwD8vFZNCcfYHD8VoBQ</recordid><startdate>201801</startdate><enddate>201801</enddate><creator>Jinghui Cao</creator><creator>Sheng Quan Xie</creator><creator>Das, Raj</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7266-8822</orcidid></search><sort><creationdate>201801</creationdate><title>MIMO Sliding Mode Controller for Gait Exoskeleton Driven by Pneumatic Muscles</title><author>Jinghui Cao ; Sheng Quan Xie ; Das, Raj</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-c411aaa7cf776952035fa95ef50a795d9fc419f9db548701b6aa1866debda6523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Actuators</topic><topic>Biological system modeling</topic><topic>Compliance</topic><topic>Exoskeletons</topic><topic>Force</topic><topic>Gait</topic><topic>Gait rehabilitation</topic><topic>Knee</topic><topic>MIMO (control systems)</topic><topic>Multivariable control</topic><topic>Muscles</topic><topic>pneumatic muscle (PM) actuators</topic><topic>Rehabilitation</topic><topic>Rehabilitation robots</topic><topic>Robots</topic><topic>Robust control</topic><topic>sliding mode (SM) control</topic><topic>Sliding mode control</topic><topic>Tracking control</topic><topic>Training</topic><topic>Trajectory</topic><topic>Trajectory control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jinghui Cao</creatorcontrib><creatorcontrib>Sheng Quan Xie</creatorcontrib><creatorcontrib>Das, Raj</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on control systems technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jinghui Cao</au><au>Sheng Quan Xie</au><au>Das, Raj</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MIMO Sliding Mode Controller for Gait Exoskeleton Driven by Pneumatic Muscles</atitle><jtitle>IEEE transactions on control systems technology</jtitle><stitle>TCST</stitle><date>2018-01</date><risdate>2018</risdate><volume>26</volume><issue>1</issue><spage>274</spage><epage>281</epage><pages>274-281</pages><issn>1063-6536</issn><eissn>1558-0865</eissn><coden>IETTE2</coden><abstract>In the past decade, pneumatic muscle (PM) actuated rehabilitation robotic devices have been widely researched, mainly due to the actuators' intrinsic compliance and high power to weight ratio. However, the PMs are highly nonlinear and subject to hysteresis behavior. Hence, robust trajectory and compliance control are important to realize different training strategies and modes for improving the effectiveness of the rehabilitation robots. This paper presents a multi-input-multioutput sliding mode controller, which is developed to simultaneously control the angular trajectory and compliance of the knee joint mechanism of a gait rehabilitation exoskeleton. Experimental results indicate good multivariable tracking performance of this controller, which provides a good foundation for the further development of assist-as-needed training strategies in gait rehabilitation.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCST.2017.2654424</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-7266-8822</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1063-6536 |
ispartof | IEEE transactions on control systems technology, 2018-01, Vol.26 (1), p.274-281 |
issn | 1063-6536 1558-0865 |
language | eng |
recordid | cdi_proquest_journals_1974442898 |
source | IEEE Electronic Library (IEL) |
subjects | Actuators Biological system modeling Compliance Exoskeletons Force Gait Gait rehabilitation Knee MIMO (control systems) Multivariable control Muscles pneumatic muscle (PM) actuators Rehabilitation Rehabilitation robots Robots Robust control sliding mode (SM) control Sliding mode control Tracking control Training Trajectory Trajectory control |
title | MIMO Sliding Mode Controller for Gait Exoskeleton Driven by Pneumatic Muscles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T05%3A02%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MIMO%20Sliding%20Mode%20Controller%20for%20Gait%20Exoskeleton%20Driven%20by%20Pneumatic%20Muscles&rft.jtitle=IEEE%20transactions%20on%20control%20systems%20technology&rft.au=Jinghui%20Cao&rft.date=2018-01&rft.volume=26&rft.issue=1&rft.spage=274&rft.epage=281&rft.pages=274-281&rft.issn=1063-6536&rft.eissn=1558-0865&rft.coden=IETTE2&rft_id=info:doi/10.1109/TCST.2017.2654424&rft_dat=%3Cproquest_RIE%3E1974442898%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1974442898&rft_id=info:pmid/&rft_ieee_id=7837685&rfr_iscdi=true |