LSTMVis: A Tool for Visual Analysis of Hidden State Dynamics in Recurrent Neural Networks
Recurrent neural networks, and in particular long short-term memory (LSTM) networks, are a remarkably effective tool for sequence modeling that learn a dense black-box hidden representation of their sequential input. Researchers interested in better understanding these models have studied the change...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on visualization and computer graphics 2018-01, Vol.24 (1), p.667-676 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 676 |
---|---|
container_issue | 1 |
container_start_page | 667 |
container_title | IEEE transactions on visualization and computer graphics |
container_volume | 24 |
creator | Strobelt, Hendrik Gehrmann, Sebastian Pfister, Hanspeter Rush, Alexander M. |
description | Recurrent neural networks, and in particular long short-term memory (LSTM) networks, are a remarkably effective tool for sequence modeling that learn a dense black-box hidden representation of their sequential input. Researchers interested in better understanding these models have studied the changes in hidden state representations over time and noticed some interpretable patterns but also significant noise. In this work, we present LSTMVis, a visual analysis tool for recurrent neural networks with a focus on understanding these hidden state dynamics. The tool allows users to select a hypothesis input range to focus on local state changes, to match these states changes to similar patterns in a large data set, and to align these results with structural annotations from their domain. We show several use cases of the tool for analyzing specific hidden state properties on dataset containing nesting, phrase structure, and chord progressions, and demonstrate how the tool can be used to isolate patterns for further statistical analysis. We characterize the domain, the different stakeholders, and their goals and tasks. Long-term usage data after putting the tool online revealed great interest in the machine learning community. |
doi_str_mv | 10.1109/TVCG.2017.2744158 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1974433212</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8017583</ieee_id><sourcerecordid>1974433212</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-8884ac4221c3797df824e106599cc2b5e76e16f1c6968d2314eb459f00790d3b3</originalsourceid><addsrcrecordid>eNpdkF1LwzAUhoMofv8AESTgjTedOUmaJt6N-QlTwc2BV6VLT6HaNZq0yP69GZteeHVyyPO-cB5CToANAJi5nM5GdwPOIBvwTEpI9RbZByMhYSlT2_HNsizhiqs9chDCO2MgpTa7ZI9rrVTK1T55G0-mj7M6XNEhnTrX0Mp5Gve-aOiwLZplqAN1Fb2vyxJbOumKDun1si0WtQ20bukL2t57bDv6hL2PqSfsvp3_CEdkpyqagMebeUheb2-mo_tk_Hz3MBqOEyuV6BKttSys5BysyExWVppLBKZSY6zl8xQzhaAqsMooXXIBEucyNRVjmWGlmItDcrHu_fTuq8fQ5Ys6WGyaokXXhxyMSCXjhrGInv9D313v45UrKhoUggOPFKwp610IHqv809eLwi9zYPnKe77ynq-85xvvMXO2ae7nCyz_Er-iI3C6BmpE_PvWsSOmxQ9zjYPo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1974433212</pqid></control><display><type>article</type><title>LSTMVis: A Tool for Visual Analysis of Hidden State Dynamics in Recurrent Neural Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Strobelt, Hendrik ; Gehrmann, Sebastian ; Pfister, Hanspeter ; Rush, Alexander M.</creator><creatorcontrib>Strobelt, Hendrik ; Gehrmann, Sebastian ; Pfister, Hanspeter ; Rush, Alexander M.</creatorcontrib><description>Recurrent neural networks, and in particular long short-term memory (LSTM) networks, are a remarkably effective tool for sequence modeling that learn a dense black-box hidden representation of their sequential input. Researchers interested in better understanding these models have studied the changes in hidden state representations over time and noticed some interpretable patterns but also significant noise. In this work, we present LSTMVis, a visual analysis tool for recurrent neural networks with a focus on understanding these hidden state dynamics. The tool allows users to select a hypothesis input range to focus on local state changes, to match these states changes to similar patterns in a large data set, and to align these results with structural annotations from their domain. We show several use cases of the tool for analyzing specific hidden state properties on dataset containing nesting, phrase structure, and chord progressions, and demonstrate how the tool can be used to isolate patterns for further statistical analysis. We characterize the domain, the different stakeholders, and their goals and tasks. Long-term usage data after putting the tool online revealed great interest in the machine learning community.</description><identifier>ISSN: 1077-2626</identifier><identifier>EISSN: 1941-0506</identifier><identifier>DOI: 10.1109/TVCG.2017.2744158</identifier><identifier>PMID: 28866526</identifier><identifier>CODEN: ITVGEA</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Annotations ; Computational modeling ; Data models ; LSTM ; Machine Learning ; Nesting ; Neural networks ; Pattern matching ; Progressions ; Recurrent neural networks ; Representations ; Statistical analysis ; Visualization</subject><ispartof>IEEE transactions on visualization and computer graphics, 2018-01, Vol.24 (1), p.667-676</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-8884ac4221c3797df824e106599cc2b5e76e16f1c6968d2314eb459f00790d3b3</citedby><cites>FETCH-LOGICAL-c463t-8884ac4221c3797df824e106599cc2b5e76e16f1c6968d2314eb459f00790d3b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8017583$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8017583$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28866526$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Strobelt, Hendrik</creatorcontrib><creatorcontrib>Gehrmann, Sebastian</creatorcontrib><creatorcontrib>Pfister, Hanspeter</creatorcontrib><creatorcontrib>Rush, Alexander M.</creatorcontrib><title>LSTMVis: A Tool for Visual Analysis of Hidden State Dynamics in Recurrent Neural Networks</title><title>IEEE transactions on visualization and computer graphics</title><addtitle>TVCG</addtitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><description>Recurrent neural networks, and in particular long short-term memory (LSTM) networks, are a remarkably effective tool for sequence modeling that learn a dense black-box hidden representation of their sequential input. Researchers interested in better understanding these models have studied the changes in hidden state representations over time and noticed some interpretable patterns but also significant noise. In this work, we present LSTMVis, a visual analysis tool for recurrent neural networks with a focus on understanding these hidden state dynamics. The tool allows users to select a hypothesis input range to focus on local state changes, to match these states changes to similar patterns in a large data set, and to align these results with structural annotations from their domain. We show several use cases of the tool for analyzing specific hidden state properties on dataset containing nesting, phrase structure, and chord progressions, and demonstrate how the tool can be used to isolate patterns for further statistical analysis. We characterize the domain, the different stakeholders, and their goals and tasks. Long-term usage data after putting the tool online revealed great interest in the machine learning community.</description><subject>Annotations</subject><subject>Computational modeling</subject><subject>Data models</subject><subject>LSTM</subject><subject>Machine Learning</subject><subject>Nesting</subject><subject>Neural networks</subject><subject>Pattern matching</subject><subject>Progressions</subject><subject>Recurrent neural networks</subject><subject>Representations</subject><subject>Statistical analysis</subject><subject>Visualization</subject><issn>1077-2626</issn><issn>1941-0506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkF1LwzAUhoMofv8AESTgjTedOUmaJt6N-QlTwc2BV6VLT6HaNZq0yP69GZteeHVyyPO-cB5CToANAJi5nM5GdwPOIBvwTEpI9RbZByMhYSlT2_HNsizhiqs9chDCO2MgpTa7ZI9rrVTK1T55G0-mj7M6XNEhnTrX0Mp5Gve-aOiwLZplqAN1Fb2vyxJbOumKDun1si0WtQ20bukL2t57bDv6hL2PqSfsvp3_CEdkpyqagMebeUheb2-mo_tk_Hz3MBqOEyuV6BKttSys5BysyExWVppLBKZSY6zl8xQzhaAqsMooXXIBEucyNRVjmWGlmItDcrHu_fTuq8fQ5Ys6WGyaokXXhxyMSCXjhrGInv9D313v45UrKhoUggOPFKwp610IHqv809eLwi9zYPnKe77ynq-85xvvMXO2ae7nCyz_Er-iI3C6BmpE_PvWsSOmxQ9zjYPo</recordid><startdate>201801</startdate><enddate>201801</enddate><creator>Strobelt, Hendrik</creator><creator>Gehrmann, Sebastian</creator><creator>Pfister, Hanspeter</creator><creator>Rush, Alexander M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>201801</creationdate><title>LSTMVis: A Tool for Visual Analysis of Hidden State Dynamics in Recurrent Neural Networks</title><author>Strobelt, Hendrik ; Gehrmann, Sebastian ; Pfister, Hanspeter ; Rush, Alexander M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-8884ac4221c3797df824e106599cc2b5e76e16f1c6968d2314eb459f00790d3b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Annotations</topic><topic>Computational modeling</topic><topic>Data models</topic><topic>LSTM</topic><topic>Machine Learning</topic><topic>Nesting</topic><topic>Neural networks</topic><topic>Pattern matching</topic><topic>Progressions</topic><topic>Recurrent neural networks</topic><topic>Representations</topic><topic>Statistical analysis</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Strobelt, Hendrik</creatorcontrib><creatorcontrib>Gehrmann, Sebastian</creatorcontrib><creatorcontrib>Pfister, Hanspeter</creatorcontrib><creatorcontrib>Rush, Alexander M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on visualization and computer graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Strobelt, Hendrik</au><au>Gehrmann, Sebastian</au><au>Pfister, Hanspeter</au><au>Rush, Alexander M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LSTMVis: A Tool for Visual Analysis of Hidden State Dynamics in Recurrent Neural Networks</atitle><jtitle>IEEE transactions on visualization and computer graphics</jtitle><stitle>TVCG</stitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><date>2018-01</date><risdate>2018</risdate><volume>24</volume><issue>1</issue><spage>667</spage><epage>676</epage><pages>667-676</pages><issn>1077-2626</issn><eissn>1941-0506</eissn><coden>ITVGEA</coden><abstract>Recurrent neural networks, and in particular long short-term memory (LSTM) networks, are a remarkably effective tool for sequence modeling that learn a dense black-box hidden representation of their sequential input. Researchers interested in better understanding these models have studied the changes in hidden state representations over time and noticed some interpretable patterns but also significant noise. In this work, we present LSTMVis, a visual analysis tool for recurrent neural networks with a focus on understanding these hidden state dynamics. The tool allows users to select a hypothesis input range to focus on local state changes, to match these states changes to similar patterns in a large data set, and to align these results with structural annotations from their domain. We show several use cases of the tool for analyzing specific hidden state properties on dataset containing nesting, phrase structure, and chord progressions, and demonstrate how the tool can be used to isolate patterns for further statistical analysis. We characterize the domain, the different stakeholders, and their goals and tasks. Long-term usage data after putting the tool online revealed great interest in the machine learning community.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>28866526</pmid><doi>10.1109/TVCG.2017.2744158</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1077-2626 |
ispartof | IEEE transactions on visualization and computer graphics, 2018-01, Vol.24 (1), p.667-676 |
issn | 1077-2626 1941-0506 |
language | eng |
recordid | cdi_proquest_journals_1974433212 |
source | IEEE Electronic Library (IEL) |
subjects | Annotations Computational modeling Data models LSTM Machine Learning Nesting Neural networks Pattern matching Progressions Recurrent neural networks Representations Statistical analysis Visualization |
title | LSTMVis: A Tool for Visual Analysis of Hidden State Dynamics in Recurrent Neural Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T07%3A06%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LSTMVis:%20A%20Tool%20for%20Visual%20Analysis%20of%20Hidden%20State%20Dynamics%20in%20Recurrent%20Neural%20Networks&rft.jtitle=IEEE%20transactions%20on%20visualization%20and%20computer%20graphics&rft.au=Strobelt,%20Hendrik&rft.date=2018-01&rft.volume=24&rft.issue=1&rft.spage=667&rft.epage=676&rft.pages=667-676&rft.issn=1077-2626&rft.eissn=1941-0506&rft.coden=ITVGEA&rft_id=info:doi/10.1109/TVCG.2017.2744158&rft_dat=%3Cproquest_RIE%3E1974433212%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1974433212&rft_id=info:pmid/28866526&rft_ieee_id=8017583&rfr_iscdi=true |