Location Privacy in Mobile Edge Clouds: A Chaff-Based Approach

In this paper, we consider user location privacy in mobile edge clouds (MECs). MECs are small clouds deployed at the network edge to offer cloud services close to mobile users, and many solutions have been proposed to maximize service locality by migrating services to follow their users. Co-location...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal on selected areas in communications 2017-11, Vol.35 (11), p.2625-2636
Hauptverfasser: Ting He, Ciftcioglu, Ertugrul Necdet, Shiqiang Wang, Chan, Kevin S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2636
container_issue 11
container_start_page 2625
container_title IEEE journal on selected areas in communications
container_volume 35
creator Ting He
Ciftcioglu, Ertugrul Necdet
Shiqiang Wang
Chan, Kevin S.
description In this paper, we consider user location privacy in mobile edge clouds (MECs). MECs are small clouds deployed at the network edge to offer cloud services close to mobile users, and many solutions have been proposed to maximize service locality by migrating services to follow their users. Co-location of a user and his service, however, implies that a cyber eavesdropper observing service migrations between MECs can localize the user up to one MEC coverage area, which can be fairly small (e.g., a femtocell). We consider using chaff services to defend against such an eavesdropper, with a focus on strategies to control the chaffs. Assuming the eavesdropper performs maximum likelihood detection, we consider both heuristic strategies that mimic the user's mobility and optimized strategies designed to minimize the detection or tracking accuracy. We show that a single chaff controlled by the optimal strategy or its online variation can drive the eavesdropper's tracking accuracy to zero when the user's mobility is sufficiently random. We further propose extended strategies that utilize randomization to defend against an advanced eavesdropper aware of the strategy. The efficacy of our solutions is verified through both synthetic and trace-driven simulations.
doi_str_mv 10.1109/JSAC.2017.2760179
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1974431860</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8058447</ieee_id><sourcerecordid>1974431860</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-40a7edef35cc2bb718ea732d8f7e0b4088e0f992a6f70c6a339a263e8e4be26b3</originalsourceid><addsrcrecordid>eNo9kEtLw0AUhQdRsFZ_gLgZcJ1655F5uBBiqC8qCup6mEzu2JTa1Exb6L83pcXV2XznHPgIuWQwYgzszctHUY44MD3iWvVhj8iA5bnJAMAckwFoITKjmTolZynNAJiUhg_I3aQNftW0C_reNRsftrRZ0Ne2auZIx_U30nLerut0SwtaTn2M2b1PWNNiuexaH6bn5CT6ecKLQw7J18P4s3zKJm-Pz2UxyQK3YpVJ8BprjCIPgVeVZga9Frw2USNUEoxBiNZyr6KGoLwQ1nMl0KCskKtKDMn1fre__V1jWrlZu-4W_aVjVkspmFHQU2xPha5NqcPoll3z47utY-B2mtxOk9tpcgdNfedq32kQ8Z83kBsptfgDVithsA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1974431860</pqid></control><display><type>article</type><title>Location Privacy in Mobile Edge Clouds: A Chaff-Based Approach</title><source>IEEE Electronic Library (IEL)</source><creator>Ting He ; Ciftcioglu, Ertugrul Necdet ; Shiqiang Wang ; Chan, Kevin S.</creator><creatorcontrib>Ting He ; Ciftcioglu, Ertugrul Necdet ; Shiqiang Wang ; Chan, Kevin S.</creatorcontrib><description>In this paper, we consider user location privacy in mobile edge clouds (MECs). MECs are small clouds deployed at the network edge to offer cloud services close to mobile users, and many solutions have been proposed to maximize service locality by migrating services to follow their users. Co-location of a user and his service, however, implies that a cyber eavesdropper observing service migrations between MECs can localize the user up to one MEC coverage area, which can be fairly small (e.g., a femtocell). We consider using chaff services to defend against such an eavesdropper, with a focus on strategies to control the chaffs. Assuming the eavesdropper performs maximum likelihood detection, we consider both heuristic strategies that mimic the user's mobility and optimized strategies designed to minimize the detection or tracking accuracy. We show that a single chaff controlled by the optimal strategy or its online variation can drive the eavesdropper's tracking accuracy to zero when the user's mobility is sufficiently random. We further propose extended strategies that utilize randomization to defend against an advanced eavesdropper aware of the strategy. The efficacy of our solutions is verified through both synthetic and trace-driven simulations.</description><identifier>ISSN: 0733-8716</identifier><identifier>EISSN: 1558-0008</identifier><identifier>DOI: 10.1109/JSAC.2017.2760179</identifier><identifier>CODEN: ISACEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Chaff ; chaff service ; Cloud computing ; Communication system security ; Edge computing ; location privacy ; Mobile communication ; Mobile edge cloud ; Privacy ; Wireless communication ; Wireless sensor networks</subject><ispartof>IEEE journal on selected areas in communications, 2017-11, Vol.35 (11), p.2625-2636</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-40a7edef35cc2bb718ea732d8f7e0b4088e0f992a6f70c6a339a263e8e4be26b3</citedby><cites>FETCH-LOGICAL-c293t-40a7edef35cc2bb718ea732d8f7e0b4088e0f992a6f70c6a339a263e8e4be26b3</cites><orcidid>0000-0002-9328-2048 ; 0000-0003-1070-7483 ; 0000-0002-6425-5403</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8058447$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27907,27908,54741</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8058447$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ting He</creatorcontrib><creatorcontrib>Ciftcioglu, Ertugrul Necdet</creatorcontrib><creatorcontrib>Shiqiang Wang</creatorcontrib><creatorcontrib>Chan, Kevin S.</creatorcontrib><title>Location Privacy in Mobile Edge Clouds: A Chaff-Based Approach</title><title>IEEE journal on selected areas in communications</title><addtitle>J-SAC</addtitle><description>In this paper, we consider user location privacy in mobile edge clouds (MECs). MECs are small clouds deployed at the network edge to offer cloud services close to mobile users, and many solutions have been proposed to maximize service locality by migrating services to follow their users. Co-location of a user and his service, however, implies that a cyber eavesdropper observing service migrations between MECs can localize the user up to one MEC coverage area, which can be fairly small (e.g., a femtocell). We consider using chaff services to defend against such an eavesdropper, with a focus on strategies to control the chaffs. Assuming the eavesdropper performs maximum likelihood detection, we consider both heuristic strategies that mimic the user's mobility and optimized strategies designed to minimize the detection or tracking accuracy. We show that a single chaff controlled by the optimal strategy or its online variation can drive the eavesdropper's tracking accuracy to zero when the user's mobility is sufficiently random. We further propose extended strategies that utilize randomization to defend against an advanced eavesdropper aware of the strategy. The efficacy of our solutions is verified through both synthetic and trace-driven simulations.</description><subject>Chaff</subject><subject>chaff service</subject><subject>Cloud computing</subject><subject>Communication system security</subject><subject>Edge computing</subject><subject>location privacy</subject><subject>Mobile communication</subject><subject>Mobile edge cloud</subject><subject>Privacy</subject><subject>Wireless communication</subject><subject>Wireless sensor networks</subject><issn>0733-8716</issn><issn>1558-0008</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtLw0AUhQdRsFZ_gLgZcJ1655F5uBBiqC8qCup6mEzu2JTa1Exb6L83pcXV2XznHPgIuWQwYgzszctHUY44MD3iWvVhj8iA5bnJAMAckwFoITKjmTolZynNAJiUhg_I3aQNftW0C_reNRsftrRZ0Ne2auZIx_U30nLerut0SwtaTn2M2b1PWNNiuexaH6bn5CT6ecKLQw7J18P4s3zKJm-Pz2UxyQK3YpVJ8BprjCIPgVeVZga9Frw2USNUEoxBiNZyr6KGoLwQ1nMl0KCskKtKDMn1fre__V1jWrlZu-4W_aVjVkspmFHQU2xPha5NqcPoll3z47utY-B2mtxOk9tpcgdNfedq32kQ8Z83kBsptfgDVithsA</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>Ting He</creator><creator>Ciftcioglu, Ertugrul Necdet</creator><creator>Shiqiang Wang</creator><creator>Chan, Kevin S.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9328-2048</orcidid><orcidid>https://orcid.org/0000-0003-1070-7483</orcidid><orcidid>https://orcid.org/0000-0002-6425-5403</orcidid></search><sort><creationdate>20171101</creationdate><title>Location Privacy in Mobile Edge Clouds: A Chaff-Based Approach</title><author>Ting He ; Ciftcioglu, Ertugrul Necdet ; Shiqiang Wang ; Chan, Kevin S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-40a7edef35cc2bb718ea732d8f7e0b4088e0f992a6f70c6a339a263e8e4be26b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Chaff</topic><topic>chaff service</topic><topic>Cloud computing</topic><topic>Communication system security</topic><topic>Edge computing</topic><topic>location privacy</topic><topic>Mobile communication</topic><topic>Mobile edge cloud</topic><topic>Privacy</topic><topic>Wireless communication</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ting He</creatorcontrib><creatorcontrib>Ciftcioglu, Ertugrul Necdet</creatorcontrib><creatorcontrib>Shiqiang Wang</creatorcontrib><creatorcontrib>Chan, Kevin S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal on selected areas in communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ting He</au><au>Ciftcioglu, Ertugrul Necdet</au><au>Shiqiang Wang</au><au>Chan, Kevin S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Location Privacy in Mobile Edge Clouds: A Chaff-Based Approach</atitle><jtitle>IEEE journal on selected areas in communications</jtitle><stitle>J-SAC</stitle><date>2017-11-01</date><risdate>2017</risdate><volume>35</volume><issue>11</issue><spage>2625</spage><epage>2636</epage><pages>2625-2636</pages><issn>0733-8716</issn><eissn>1558-0008</eissn><coden>ISACEM</coden><abstract>In this paper, we consider user location privacy in mobile edge clouds (MECs). MECs are small clouds deployed at the network edge to offer cloud services close to mobile users, and many solutions have been proposed to maximize service locality by migrating services to follow their users. Co-location of a user and his service, however, implies that a cyber eavesdropper observing service migrations between MECs can localize the user up to one MEC coverage area, which can be fairly small (e.g., a femtocell). We consider using chaff services to defend against such an eavesdropper, with a focus on strategies to control the chaffs. Assuming the eavesdropper performs maximum likelihood detection, we consider both heuristic strategies that mimic the user's mobility and optimized strategies designed to minimize the detection or tracking accuracy. We show that a single chaff controlled by the optimal strategy or its online variation can drive the eavesdropper's tracking accuracy to zero when the user's mobility is sufficiently random. We further propose extended strategies that utilize randomization to defend against an advanced eavesdropper aware of the strategy. The efficacy of our solutions is verified through both synthetic and trace-driven simulations.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSAC.2017.2760179</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9328-2048</orcidid><orcidid>https://orcid.org/0000-0003-1070-7483</orcidid><orcidid>https://orcid.org/0000-0002-6425-5403</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0733-8716
ispartof IEEE journal on selected areas in communications, 2017-11, Vol.35 (11), p.2625-2636
issn 0733-8716
1558-0008
language eng
recordid cdi_proquest_journals_1974431860
source IEEE Electronic Library (IEL)
subjects Chaff
chaff service
Cloud computing
Communication system security
Edge computing
location privacy
Mobile communication
Mobile edge cloud
Privacy
Wireless communication
Wireless sensor networks
title Location Privacy in Mobile Edge Clouds: A Chaff-Based Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T02%3A01%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Location%20Privacy%20in%20Mobile%20Edge%20Clouds:%20A%20Chaff-Based%20Approach&rft.jtitle=IEEE%20journal%20on%20selected%20areas%20in%20communications&rft.au=Ting%20He&rft.date=2017-11-01&rft.volume=35&rft.issue=11&rft.spage=2625&rft.epage=2636&rft.pages=2625-2636&rft.issn=0733-8716&rft.eissn=1558-0008&rft.coden=ISACEM&rft_id=info:doi/10.1109/JSAC.2017.2760179&rft_dat=%3Cproquest_RIE%3E1974431860%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1974431860&rft_id=info:pmid/&rft_ieee_id=8058447&rfr_iscdi=true