Genistein Chemoprevention: Timing and Mechanisms of Action in Murine Mammary and Prostate
We investigated the potential of genistein, the primary isoflavone of soy, to protect against breast and prostate cancers in animal models. For mammary cancer studies, Sprague-Dawley rats were fed AIN-76A diet ± 250 mg genistein/kg diet. Dimethylbenz[a]anthracene was administered by gavage at d 50 p...
Gespeichert in:
Veröffentlicht in: | The Journal of nutrition 2002-03, Vol.132 (3), p.552S-558S |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 558S |
---|---|
container_issue | 3 |
container_start_page | 552S |
container_title | The Journal of nutrition |
container_volume | 132 |
creator | Lamartiniere, Coral A. Cotroneo, Michelle S. Fritz, Wayne A. Wang, Jun Mentor-Marcel, Roycelynn Elgavish, Ada |
description | We investigated the potential of genistein, the primary isoflavone of soy, to protect against breast and prostate cancers in animal models. For mammary cancer studies, Sprague-Dawley rats were fed AIN-76A diet ± 250 mg genistein/kg diet. Dimethylbenz[a]anthracene was administered by gavage at d 50 postpartum to induce mammary tumors. Mammary cancer chemoprevention was demonstrated after prepubertal and combined prepubertal and adult genistein treatments but not after prenatal- or adult-only treatments, demonstrating that the timing of exposure to genistein is important for mammary cancer chemoprevention. The cellular mechanism of action was found to be mammary gland and cell differentiation, as shown by whole-mount analysis and β-casein expression. An imprinting effect was shown for epidermal growth factor receptor expression in mammary terminal end buds. For prostate cancer studies, we used two models. The first was a chemically (N-methylnitrosourea) induced prostate cancer rat model. Genistein in the diet inhibited the development of invasive adenocarcinomas in a dose-dependent manner. The second model was a transgenic mouse model that resulted in spontaneously developing adenocarcinoma tumor of the prostate. Genistein in the diet reduced the incidence of poorly differentiated prostatic adenocarcinomas in a dose-dependent manner and down-regulated androgen receptor, estrogen receptor-α, progesterone receptor, epidermal growth factor receptor, insulin-like growth factor-I, and extracellular signal-regulated kinase-1 but not estrogen receptor-β and transforming growth factor-α mRNA expressions. We conclude that dietary genistein protects against mammary and prostate cancers by regulating specific sex steroid receptors and growth factor signaling pathways. J. Nutr. 132: 552S–558S, 2002. |
doi_str_mv | 10.1093/jn/132.3.552S |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_197436919</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022316622149680</els_id><sourcerecordid>110703476</sourcerecordid><originalsourceid>FETCH-LOGICAL-c457t-4b5b9eec1ab3634eb3106dca6573c49c664415b63124d0162f5b14e5479bca523</originalsourceid><addsrcrecordid>eNp10U1rGzEQBmBRWho3zTHXZAn0uI5GX2v1Fkw-CjEtxD7kJLTaWUcmq3WkdaD_vtrY4FNPc3k0enmHkHOgU6CaX2_CNXA25VMp2dMnMgEpoFRA6WcyoZSxkoNSJ-RbShtKKQg9-0pOAGYzKjWbkOd7DD4N6EMxf8Gu30Z8xzD4Pvwslr7zYV3Y0BQLdC82wy4VfVvcuBEU-c1iF33AYmG7zsa_H_RP7NNgB_xOvrT2NeHZYZ6S1d3tcv5QPv6-_zW_eSydkNVQilrWGtGBrbniAmsOVDXOKllxJ7RTSgiQteLARENBsVbWIFCKStfOSsZPydV-7zb2bztMg9n0uxjylwZ0JbjSoDMq98jldClia7bRj5ENUDP2aDbB5B4NN2OP2V8clu7qDpujPhSXwY8DsMnZ1zba4Hw6Oi6VmqnRXe5da3tj1zGb1RPLd8jHUCLPLKq9wFzSu8dokvMYHDY-ohtM0_v_hPwH4qmV4A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>197436919</pqid></control><display><type>article</type><title>Genistein Chemoprevention: Timing and Mechanisms of Action in Murine Mammary and Prostate</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Lamartiniere, Coral A. ; Cotroneo, Michelle S. ; Fritz, Wayne A. ; Wang, Jun ; Mentor-Marcel, Roycelynn ; Elgavish, Ada</creator><creatorcontrib>Lamartiniere, Coral A. ; Cotroneo, Michelle S. ; Fritz, Wayne A. ; Wang, Jun ; Mentor-Marcel, Roycelynn ; Elgavish, Ada</creatorcontrib><description>We investigated the potential of genistein, the primary isoflavone of soy, to protect against breast and prostate cancers in animal models. For mammary cancer studies, Sprague-Dawley rats were fed AIN-76A diet ± 250 mg genistein/kg diet. Dimethylbenz[a]anthracene was administered by gavage at d 50 postpartum to induce mammary tumors. Mammary cancer chemoprevention was demonstrated after prepubertal and combined prepubertal and adult genistein treatments but not after prenatal- or adult-only treatments, demonstrating that the timing of exposure to genistein is important for mammary cancer chemoprevention. The cellular mechanism of action was found to be mammary gland and cell differentiation, as shown by whole-mount analysis and β-casein expression. An imprinting effect was shown for epidermal growth factor receptor expression in mammary terminal end buds. For prostate cancer studies, we used two models. The first was a chemically (N-methylnitrosourea) induced prostate cancer rat model. Genistein in the diet inhibited the development of invasive adenocarcinomas in a dose-dependent manner. The second model was a transgenic mouse model that resulted in spontaneously developing adenocarcinoma tumor of the prostate. Genistein in the diet reduced the incidence of poorly differentiated prostatic adenocarcinomas in a dose-dependent manner and down-regulated androgen receptor, estrogen receptor-α, progesterone receptor, epidermal growth factor receptor, insulin-like growth factor-I, and extracellular signal-regulated kinase-1 but not estrogen receptor-β and transforming growth factor-α mRNA expressions. We conclude that dietary genistein protects against mammary and prostate cancers by regulating specific sex steroid receptors and growth factor signaling pathways. J. Nutr. 132: 552S–558S, 2002.</description><identifier>ISSN: 0022-3166</identifier><identifier>EISSN: 1541-6100</identifier><identifier>DOI: 10.1093/jn/132.3.552S</identifier><identifier>PMID: 11880592</identifier><identifier>CODEN: JONUAI</identifier><language>eng</language><publisher>Bethesda, MD: Elsevier Inc</publisher><subject>adenocarcinoma ; Adenocarcinoma - chemically induced ; Adenocarcinoma - genetics ; Adenocarcinoma - prevention & control ; animal models ; Animals ; Anticarcinogenic Agents - administration & dosage ; Anticarcinogenic Agents - pharmacology ; beta-casein ; Biological and medical sciences ; Breast cancer ; cancer ; cell differentiation ; Cell Differentiation - drug effects ; chemoprevention ; diet ; epidermal growth factor ; Female ; gene expression ; gene expression regulation ; genistein ; Genistein - administration & dosage ; Genistein - pharmacology ; Glycine max - chemistry ; Humans ; insulin-like growth factor I ; Male ; mammary ; Mammary Glands, Animal - drug effects ; mammary neoplasms (animal) ; Mammary Neoplasms, Experimental - prevention & control ; mechanism of action ; messenger RNA ; Mice ; Mice, Transgenic ; progesterone ; prostate ; Prostate - drug effects ; Prostate cancer ; prostatic neoplasms ; Prostatic Neoplasms - chemically induced ; Prostatic Neoplasms - genetics ; Prostatic Neoplasms - prevention & control ; Rats ; Soy products</subject><ispartof>The Journal of nutrition, 2002-03, Vol.132 (3), p.552S-558S</ispartof><rights>2002 American Society for Nutrition.</rights><rights>2002 INIST-CNRS</rights><rights>Copyright American Institute of Nutrition Mar 2002</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c457t-4b5b9eec1ab3634eb3106dca6573c49c664415b63124d0162f5b14e5479bca523</citedby><cites>FETCH-LOGICAL-c457t-4b5b9eec1ab3634eb3106dca6573c49c664415b63124d0162f5b14e5479bca523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13566862$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11880592$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lamartiniere, Coral A.</creatorcontrib><creatorcontrib>Cotroneo, Michelle S.</creatorcontrib><creatorcontrib>Fritz, Wayne A.</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><creatorcontrib>Mentor-Marcel, Roycelynn</creatorcontrib><creatorcontrib>Elgavish, Ada</creatorcontrib><title>Genistein Chemoprevention: Timing and Mechanisms of Action in Murine Mammary and Prostate</title><title>The Journal of nutrition</title><addtitle>J Nutr</addtitle><description>We investigated the potential of genistein, the primary isoflavone of soy, to protect against breast and prostate cancers in animal models. For mammary cancer studies, Sprague-Dawley rats were fed AIN-76A diet ± 250 mg genistein/kg diet. Dimethylbenz[a]anthracene was administered by gavage at d 50 postpartum to induce mammary tumors. Mammary cancer chemoprevention was demonstrated after prepubertal and combined prepubertal and adult genistein treatments but not after prenatal- or adult-only treatments, demonstrating that the timing of exposure to genistein is important for mammary cancer chemoprevention. The cellular mechanism of action was found to be mammary gland and cell differentiation, as shown by whole-mount analysis and β-casein expression. An imprinting effect was shown for epidermal growth factor receptor expression in mammary terminal end buds. For prostate cancer studies, we used two models. The first was a chemically (N-methylnitrosourea) induced prostate cancer rat model. Genistein in the diet inhibited the development of invasive adenocarcinomas in a dose-dependent manner. The second model was a transgenic mouse model that resulted in spontaneously developing adenocarcinoma tumor of the prostate. Genistein in the diet reduced the incidence of poorly differentiated prostatic adenocarcinomas in a dose-dependent manner and down-regulated androgen receptor, estrogen receptor-α, progesterone receptor, epidermal growth factor receptor, insulin-like growth factor-I, and extracellular signal-regulated kinase-1 but not estrogen receptor-β and transforming growth factor-α mRNA expressions. We conclude that dietary genistein protects against mammary and prostate cancers by regulating specific sex steroid receptors and growth factor signaling pathways. J. Nutr. 132: 552S–558S, 2002.</description><subject>adenocarcinoma</subject><subject>Adenocarcinoma - chemically induced</subject><subject>Adenocarcinoma - genetics</subject><subject>Adenocarcinoma - prevention & control</subject><subject>animal models</subject><subject>Animals</subject><subject>Anticarcinogenic Agents - administration & dosage</subject><subject>Anticarcinogenic Agents - pharmacology</subject><subject>beta-casein</subject><subject>Biological and medical sciences</subject><subject>Breast cancer</subject><subject>cancer</subject><subject>cell differentiation</subject><subject>Cell Differentiation - drug effects</subject><subject>chemoprevention</subject><subject>diet</subject><subject>epidermal growth factor</subject><subject>Female</subject><subject>gene expression</subject><subject>gene expression regulation</subject><subject>genistein</subject><subject>Genistein - administration & dosage</subject><subject>Genistein - pharmacology</subject><subject>Glycine max - chemistry</subject><subject>Humans</subject><subject>insulin-like growth factor I</subject><subject>Male</subject><subject>mammary</subject><subject>Mammary Glands, Animal - drug effects</subject><subject>mammary neoplasms (animal)</subject><subject>Mammary Neoplasms, Experimental - prevention & control</subject><subject>mechanism of action</subject><subject>messenger RNA</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>progesterone</subject><subject>prostate</subject><subject>Prostate - drug effects</subject><subject>Prostate cancer</subject><subject>prostatic neoplasms</subject><subject>Prostatic Neoplasms - chemically induced</subject><subject>Prostatic Neoplasms - genetics</subject><subject>Prostatic Neoplasms - prevention & control</subject><subject>Rats</subject><subject>Soy products</subject><issn>0022-3166</issn><issn>1541-6100</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10U1rGzEQBmBRWho3zTHXZAn0uI5GX2v1Fkw-CjEtxD7kJLTaWUcmq3WkdaD_vtrY4FNPc3k0enmHkHOgU6CaX2_CNXA25VMp2dMnMgEpoFRA6WcyoZSxkoNSJ-RbShtKKQg9-0pOAGYzKjWbkOd7DD4N6EMxf8Gu30Z8xzD4Pvwslr7zYV3Y0BQLdC82wy4VfVvcuBEU-c1iF33AYmG7zsa_H_RP7NNgB_xOvrT2NeHZYZ6S1d3tcv5QPv6-_zW_eSydkNVQilrWGtGBrbniAmsOVDXOKllxJ7RTSgiQteLARENBsVbWIFCKStfOSsZPydV-7zb2bztMg9n0uxjylwZ0JbjSoDMq98jldClia7bRj5ENUDP2aDbB5B4NN2OP2V8clu7qDpujPhSXwY8DsMnZ1zba4Hw6Oi6VmqnRXe5da3tj1zGb1RPLd8jHUCLPLKq9wFzSu8dokvMYHDY-ohtM0_v_hPwH4qmV4A</recordid><startdate>20020301</startdate><enddate>20020301</enddate><creator>Lamartiniere, Coral A.</creator><creator>Cotroneo, Michelle S.</creator><creator>Fritz, Wayne A.</creator><creator>Wang, Jun</creator><creator>Mentor-Marcel, Roycelynn</creator><creator>Elgavish, Ada</creator><general>Elsevier Inc</general><general>American Society for Nutritional Sciences</general><general>American Institute of Nutrition</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>NAPCQ</scope></search><sort><creationdate>20020301</creationdate><title>Genistein Chemoprevention: Timing and Mechanisms of Action in Murine Mammary and Prostate</title><author>Lamartiniere, Coral A. ; Cotroneo, Michelle S. ; Fritz, Wayne A. ; Wang, Jun ; Mentor-Marcel, Roycelynn ; Elgavish, Ada</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c457t-4b5b9eec1ab3634eb3106dca6573c49c664415b63124d0162f5b14e5479bca523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>adenocarcinoma</topic><topic>Adenocarcinoma - chemically induced</topic><topic>Adenocarcinoma - genetics</topic><topic>Adenocarcinoma - prevention & control</topic><topic>animal models</topic><topic>Animals</topic><topic>Anticarcinogenic Agents - administration & dosage</topic><topic>Anticarcinogenic Agents - pharmacology</topic><topic>beta-casein</topic><topic>Biological and medical sciences</topic><topic>Breast cancer</topic><topic>cancer</topic><topic>cell differentiation</topic><topic>Cell Differentiation - drug effects</topic><topic>chemoprevention</topic><topic>diet</topic><topic>epidermal growth factor</topic><topic>Female</topic><topic>gene expression</topic><topic>gene expression regulation</topic><topic>genistein</topic><topic>Genistein - administration & dosage</topic><topic>Genistein - pharmacology</topic><topic>Glycine max - chemistry</topic><topic>Humans</topic><topic>insulin-like growth factor I</topic><topic>Male</topic><topic>mammary</topic><topic>Mammary Glands, Animal - drug effects</topic><topic>mammary neoplasms (animal)</topic><topic>Mammary Neoplasms, Experimental - prevention & control</topic><topic>mechanism of action</topic><topic>messenger RNA</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>progesterone</topic><topic>prostate</topic><topic>Prostate - drug effects</topic><topic>Prostate cancer</topic><topic>prostatic neoplasms</topic><topic>Prostatic Neoplasms - chemically induced</topic><topic>Prostatic Neoplasms - genetics</topic><topic>Prostatic Neoplasms - prevention & control</topic><topic>Rats</topic><topic>Soy products</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lamartiniere, Coral A.</creatorcontrib><creatorcontrib>Cotroneo, Michelle S.</creatorcontrib><creatorcontrib>Fritz, Wayne A.</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><creatorcontrib>Mentor-Marcel, Roycelynn</creatorcontrib><creatorcontrib>Elgavish, Ada</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><jtitle>The Journal of nutrition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lamartiniere, Coral A.</au><au>Cotroneo, Michelle S.</au><au>Fritz, Wayne A.</au><au>Wang, Jun</au><au>Mentor-Marcel, Roycelynn</au><au>Elgavish, Ada</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genistein Chemoprevention: Timing and Mechanisms of Action in Murine Mammary and Prostate</atitle><jtitle>The Journal of nutrition</jtitle><addtitle>J Nutr</addtitle><date>2002-03-01</date><risdate>2002</risdate><volume>132</volume><issue>3</issue><spage>552S</spage><epage>558S</epage><pages>552S-558S</pages><issn>0022-3166</issn><eissn>1541-6100</eissn><coden>JONUAI</coden><abstract>We investigated the potential of genistein, the primary isoflavone of soy, to protect against breast and prostate cancers in animal models. For mammary cancer studies, Sprague-Dawley rats were fed AIN-76A diet ± 250 mg genistein/kg diet. Dimethylbenz[a]anthracene was administered by gavage at d 50 postpartum to induce mammary tumors. Mammary cancer chemoprevention was demonstrated after prepubertal and combined prepubertal and adult genistein treatments but not after prenatal- or adult-only treatments, demonstrating that the timing of exposure to genistein is important for mammary cancer chemoprevention. The cellular mechanism of action was found to be mammary gland and cell differentiation, as shown by whole-mount analysis and β-casein expression. An imprinting effect was shown for epidermal growth factor receptor expression in mammary terminal end buds. For prostate cancer studies, we used two models. The first was a chemically (N-methylnitrosourea) induced prostate cancer rat model. Genistein in the diet inhibited the development of invasive adenocarcinomas in a dose-dependent manner. The second model was a transgenic mouse model that resulted in spontaneously developing adenocarcinoma tumor of the prostate. Genistein in the diet reduced the incidence of poorly differentiated prostatic adenocarcinomas in a dose-dependent manner and down-regulated androgen receptor, estrogen receptor-α, progesterone receptor, epidermal growth factor receptor, insulin-like growth factor-I, and extracellular signal-regulated kinase-1 but not estrogen receptor-β and transforming growth factor-α mRNA expressions. We conclude that dietary genistein protects against mammary and prostate cancers by regulating specific sex steroid receptors and growth factor signaling pathways. J. Nutr. 132: 552S–558S, 2002.</abstract><cop>Bethesda, MD</cop><pub>Elsevier Inc</pub><pmid>11880592</pmid><doi>10.1093/jn/132.3.552S</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3166 |
ispartof | The Journal of nutrition, 2002-03, Vol.132 (3), p.552S-558S |
issn | 0022-3166 1541-6100 |
language | eng |
recordid | cdi_proquest_journals_197436919 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | adenocarcinoma Adenocarcinoma - chemically induced Adenocarcinoma - genetics Adenocarcinoma - prevention & control animal models Animals Anticarcinogenic Agents - administration & dosage Anticarcinogenic Agents - pharmacology beta-casein Biological and medical sciences Breast cancer cancer cell differentiation Cell Differentiation - drug effects chemoprevention diet epidermal growth factor Female gene expression gene expression regulation genistein Genistein - administration & dosage Genistein - pharmacology Glycine max - chemistry Humans insulin-like growth factor I Male mammary Mammary Glands, Animal - drug effects mammary neoplasms (animal) Mammary Neoplasms, Experimental - prevention & control mechanism of action messenger RNA Mice Mice, Transgenic progesterone prostate Prostate - drug effects Prostate cancer prostatic neoplasms Prostatic Neoplasms - chemically induced Prostatic Neoplasms - genetics Prostatic Neoplasms - prevention & control Rats Soy products |
title | Genistein Chemoprevention: Timing and Mechanisms of Action in Murine Mammary and Prostate |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T09%3A55%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genistein%20Chemoprevention:%20Timing%20and%20Mechanisms%20of%20Action%20in%20Murine%20Mammary%20and%20Prostate&rft.jtitle=The%20Journal%20of%20nutrition&rft.au=Lamartiniere,%20Coral%20A.&rft.date=2002-03-01&rft.volume=132&rft.issue=3&rft.spage=552S&rft.epage=558S&rft.pages=552S-558S&rft.issn=0022-3166&rft.eissn=1541-6100&rft.coden=JONUAI&rft_id=info:doi/10.1093/jn/132.3.552S&rft_dat=%3Cproquest_cross%3E110703476%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=197436919&rft_id=info:pmid/11880592&rft_els_id=S0022316622149680&rfr_iscdi=true |