Simulation of supersonic flows on the basis of splitting algorithms
For the numerical simulation of aerodynamics problems, the Euler and Navier — Stokes equations written in integral form are used to construct an implicit finite-volume predictor-corrector scheme. At the predictor stage, the splitting of equations into physical processes and spatial directions is int...
Gespeichert in:
Veröffentlicht in: | Journal of applied mechanics and technical physics 2017-09, Vol.58 (5), p.801-808 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 808 |
---|---|
container_issue | 5 |
container_start_page | 801 |
container_title | Journal of applied mechanics and technical physics |
container_volume | 58 |
creator | Kovenya, V. M. Babintsev, P. V. |
description | For the numerical simulation of aerodynamics problems, the Euler and Navier — Stokes equations written in integral form are used to construct an implicit finite-volume predictor-corrector scheme. At the predictor stage, the splitting of equations into physical processes and spatial directions is introduced, which makes it possible to reduce the solution of the original system to the solution of individual equations on fractional steps by the scalar sweep method and ensure the stability of the algorithm as a whole. The paper also describes the supersonic gas flows in a narrowing channel with regular and non-regular reflection of the compression shock from the symmetry plane and the numerical substantiation of the existence of pulsating flow with a supersonic flow past a cylinder with a needle. |
doi_str_mv | 10.1134/S0021894417050054 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1974158706</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1974158706</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-afbe1a9cd16152abbcc8ca2a85f2f81172144b959d0893b7f4ae09751dc7a2383</originalsourceid><addsrcrecordid>eNp1kE9LxDAUxIMouK5-AG8Fz9X30qRJjrL4DwQPq-eSZpPdLN2mJinit7frehDE04OZ38yDIeQS4RqxYjdLAIpSMYYCOABnR2SGXFSlrCkck9neLvf-KTlLaQsASqKYkcXS78ZOZx_6IrgijYONKfTeFK4LH6mY5LyxRauTT9_A0Pmcfb8udLcO0efNLp2TE6e7ZC9-7py83d-9Lh7L55eHp8Xtc2kqrHOpXWtRK7PCGjnVbWuMNJpqyR11ElFQZKxVXK1AqqoVjmkLSnBcGaFpJas5uTr0DjG8jzblZhvG2E8vG1SCIZcC6onCA2ViSCla1wzR73T8bBCa_VbNn62mDD1k0sT2axt_Nf8b-gLMAGr6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1974158706</pqid></control><display><type>article</type><title>Simulation of supersonic flows on the basis of splitting algorithms</title><source>Springer Nature - Complete Springer Journals</source><creator>Kovenya, V. M. ; Babintsev, P. V.</creator><creatorcontrib>Kovenya, V. M. ; Babintsev, P. V.</creatorcontrib><description>For the numerical simulation of aerodynamics problems, the Euler and Navier — Stokes equations written in integral form are used to construct an implicit finite-volume predictor-corrector scheme. At the predictor stage, the splitting of equations into physical processes and spatial directions is introduced, which makes it possible to reduce the solution of the original system to the solution of individual equations on fractional steps by the scalar sweep method and ensure the stability of the algorithm as a whole. The paper also describes the supersonic gas flows in a narrowing channel with regular and non-regular reflection of the compression shock from the symmetry plane and the numerical substantiation of the existence of pulsating flow with a supersonic flow past a cylinder with a needle.</description><identifier>ISSN: 0021-8944</identifier><identifier>EISSN: 1573-8620</identifier><identifier>DOI: 10.1134/S0021894417050054</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Applications of Mathematics ; Classical and Continuum Physics ; Classical Mechanics ; Computational fluid dynamics ; Computer simulation ; Cylinders ; Fluid- and Aerodynamics ; Mathematical analysis ; Mathematical Modeling and Industrial Mathematics ; Mechanical Engineering ; Navier-Stokes equations ; Physics ; Physics and Astronomy ; Predictor-corrector methods ; Splitting ; Supersonic aircraft ; Supersonic flow</subject><ispartof>Journal of applied mechanics and technical physics, 2017-09, Vol.58 (5), p.801-808</ispartof><rights>Pleiades Publishing, Ltd. 2017</rights><rights>Copyright Springer Science & Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-afbe1a9cd16152abbcc8ca2a85f2f81172144b959d0893b7f4ae09751dc7a2383</citedby><cites>FETCH-LOGICAL-c316t-afbe1a9cd16152abbcc8ca2a85f2f81172144b959d0893b7f4ae09751dc7a2383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0021894417050054$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0021894417050054$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Kovenya, V. M.</creatorcontrib><creatorcontrib>Babintsev, P. V.</creatorcontrib><title>Simulation of supersonic flows on the basis of splitting algorithms</title><title>Journal of applied mechanics and technical physics</title><addtitle>J Appl Mech Tech Phy</addtitle><description>For the numerical simulation of aerodynamics problems, the Euler and Navier — Stokes equations written in integral form are used to construct an implicit finite-volume predictor-corrector scheme. At the predictor stage, the splitting of equations into physical processes and spatial directions is introduced, which makes it possible to reduce the solution of the original system to the solution of individual equations on fractional steps by the scalar sweep method and ensure the stability of the algorithm as a whole. The paper also describes the supersonic gas flows in a narrowing channel with regular and non-regular reflection of the compression shock from the symmetry plane and the numerical substantiation of the existence of pulsating flow with a supersonic flow past a cylinder with a needle.</description><subject>Applications of Mathematics</subject><subject>Classical and Continuum Physics</subject><subject>Classical Mechanics</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Cylinders</subject><subject>Fluid- and Aerodynamics</subject><subject>Mathematical analysis</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mechanical Engineering</subject><subject>Navier-Stokes equations</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Predictor-corrector methods</subject><subject>Splitting</subject><subject>Supersonic aircraft</subject><subject>Supersonic flow</subject><issn>0021-8944</issn><issn>1573-8620</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LxDAUxIMouK5-AG8Fz9X30qRJjrL4DwQPq-eSZpPdLN2mJinit7frehDE04OZ38yDIeQS4RqxYjdLAIpSMYYCOABnR2SGXFSlrCkck9neLvf-KTlLaQsASqKYkcXS78ZOZx_6IrgijYONKfTeFK4LH6mY5LyxRauTT9_A0Pmcfb8udLcO0efNLp2TE6e7ZC9-7py83d-9Lh7L55eHp8Xtc2kqrHOpXWtRK7PCGjnVbWuMNJpqyR11ElFQZKxVXK1AqqoVjmkLSnBcGaFpJas5uTr0DjG8jzblZhvG2E8vG1SCIZcC6onCA2ViSCla1wzR73T8bBCa_VbNn62mDD1k0sT2axt_Nf8b-gLMAGr6</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Kovenya, V. M.</creator><creator>Babintsev, P. V.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170901</creationdate><title>Simulation of supersonic flows on the basis of splitting algorithms</title><author>Kovenya, V. M. ; Babintsev, P. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-afbe1a9cd16152abbcc8ca2a85f2f81172144b959d0893b7f4ae09751dc7a2383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Applications of Mathematics</topic><topic>Classical and Continuum Physics</topic><topic>Classical Mechanics</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Cylinders</topic><topic>Fluid- and Aerodynamics</topic><topic>Mathematical analysis</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mechanical Engineering</topic><topic>Navier-Stokes equations</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Predictor-corrector methods</topic><topic>Splitting</topic><topic>Supersonic aircraft</topic><topic>Supersonic flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kovenya, V. M.</creatorcontrib><creatorcontrib>Babintsev, P. V.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of applied mechanics and technical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kovenya, V. M.</au><au>Babintsev, P. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation of supersonic flows on the basis of splitting algorithms</atitle><jtitle>Journal of applied mechanics and technical physics</jtitle><stitle>J Appl Mech Tech Phy</stitle><date>2017-09-01</date><risdate>2017</risdate><volume>58</volume><issue>5</issue><spage>801</spage><epage>808</epage><pages>801-808</pages><issn>0021-8944</issn><eissn>1573-8620</eissn><abstract>For the numerical simulation of aerodynamics problems, the Euler and Navier — Stokes equations written in integral form are used to construct an implicit finite-volume predictor-corrector scheme. At the predictor stage, the splitting of equations into physical processes and spatial directions is introduced, which makes it possible to reduce the solution of the original system to the solution of individual equations on fractional steps by the scalar sweep method and ensure the stability of the algorithm as a whole. The paper also describes the supersonic gas flows in a narrowing channel with regular and non-regular reflection of the compression shock from the symmetry plane and the numerical substantiation of the existence of pulsating flow with a supersonic flow past a cylinder with a needle.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0021894417050054</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8944 |
ispartof | Journal of applied mechanics and technical physics, 2017-09, Vol.58 (5), p.801-808 |
issn | 0021-8944 1573-8620 |
language | eng |
recordid | cdi_proquest_journals_1974158706 |
source | Springer Nature - Complete Springer Journals |
subjects | Applications of Mathematics Classical and Continuum Physics Classical Mechanics Computational fluid dynamics Computer simulation Cylinders Fluid- and Aerodynamics Mathematical analysis Mathematical Modeling and Industrial Mathematics Mechanical Engineering Navier-Stokes equations Physics Physics and Astronomy Predictor-corrector methods Splitting Supersonic aircraft Supersonic flow |
title | Simulation of supersonic flows on the basis of splitting algorithms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T11%3A11%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20of%20supersonic%20flows%20on%20the%20basis%20of%20splitting%20algorithms&rft.jtitle=Journal%20of%20applied%20mechanics%20and%20technical%20physics&rft.au=Kovenya,%20V.%20M.&rft.date=2017-09-01&rft.volume=58&rft.issue=5&rft.spage=801&rft.epage=808&rft.pages=801-808&rft.issn=0021-8944&rft.eissn=1573-8620&rft_id=info:doi/10.1134/S0021894417050054&rft_dat=%3Cproquest_cross%3E1974158706%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1974158706&rft_id=info:pmid/&rfr_iscdi=true |