Ir/Al multilayer Gates for High Temperature Operated AlGaN/GaN HEMTs

The fabrication and characterization of the sequentially evaporated Ir/Al multilayer gates of AlGaN/GaN circular high electron mobility transistors formed by high temperature oxidation is reported. Annealing at temperature of 800 °C, for 60 s in O2 ambient makes possible to form a sharp gate interfa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica status solidi. A, Applications and materials science Applications and materials science, 2017-12, Vol.214 (12), p.n/a
Hauptverfasser: Lalinský, Tibor, Vanko, Gabriel, Dobročka, Edmund, Osvald, Jozef, Babchenko, Oleg, Dzuba, Jaroslav, Veselý, Marián, Vančo, L'ubomír, Vogrinčič, Peter, Vincze, Andrej
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 12
container_start_page
container_title Physica status solidi. A, Applications and materials science
container_volume 214
creator Lalinský, Tibor
Vanko, Gabriel
Dobročka, Edmund
Osvald, Jozef
Babchenko, Oleg
Dzuba, Jaroslav
Veselý, Marián
Vančo, L'ubomír
Vogrinčič, Peter
Vincze, Andrej
description The fabrication and characterization of the sequentially evaporated Ir/Al multilayer gates of AlGaN/GaN circular high electron mobility transistors formed by high temperature oxidation is reported. Annealing at temperature of 800 °C, for 60 s in O2 ambient makes possible to form a sharp gate interface with a high Schottky barrier height at RT (φb = 1.2 eV). It is also shown that high temperature oxidation can be an effective approach in reducing of both the gate and drain leakage currents of high electron mobility transistors (more than six orders). A comprehensive microstructural, electrical, and electro‐thermal characterization of the Ir/Al gates is carried out to study the thermal stability of the gate interface and high temperature performance of the devices. Stable operation of the devices with multilayer Ir/Al gates in the temperature range up to 500 °C is demonstrated. Here, it is proposed that the thermal stability of the interface is controlled by the formed aluminum oxide interfacial layer. Finally, perfectly clear pinch‐off characteristics and thermally induced threshold voltage (Vth) instability as low as −0.58 mV °C−1 are achieved. In this paper, AlGaN/GaN circular high electron mobility transistors (C‐HEMTs) capable to operate at elevated temperatures are presented. To withstand high temperature operation, a new design concept of the Schottky gate electrode is introduced. It consists of Ir/Al multilayers formed by high temperature oxidation (annealing in O2 at T = 800 oC for 60 s). It provides (a) high thermally stable Schottky barrier height, (b) low leakage currents, and (c) gate to be free of Au.
doi_str_mv 10.1002/pssa.201700691
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1973768854</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1973768854</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3171-93d246fb31f254a3f16e65fb1613294e358486fce00888b665b46e85d349e6f53</originalsourceid><addsrcrecordid>eNqFkE1PwkAQhjdGExG9et7Ec2Gn-9HtsUEEEhQT8LzZwqyWFFt32xD-vUUMHj1M5j08z0zyEnIPbACMxcM6BDuIGSSMqRQuSA-0iiPFIb08Z8auyU0IW8aEFAn0yOPMD7OS7tqyKUp7QE8ntsFAXeXptHj_oCvc1eht03qki5-EG5qVE_sy7IZOx8-rcEuunC0D3v3uPnl7Gq9G02i-mMxG2Txac0ggSvkmFsrlHFwsheUOFCrpclDA41Qgl1po5dbImNY6V0rmQqGWGy5SVE7yPnk43a199dViaMy2av1n99JAmvBEaS1FRw1O1NpXIXh0pvbFzvqDAWaOTZljU-bcVCekJ2FflHj4hzavy2X2534D52lqNg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1973768854</pqid></control><display><type>article</type><title>Ir/Al multilayer Gates for High Temperature Operated AlGaN/GaN HEMTs</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Lalinský, Tibor ; Vanko, Gabriel ; Dobročka, Edmund ; Osvald, Jozef ; Babchenko, Oleg ; Dzuba, Jaroslav ; Veselý, Marián ; Vančo, L'ubomír ; Vogrinčič, Peter ; Vincze, Andrej</creator><creatorcontrib>Lalinský, Tibor ; Vanko, Gabriel ; Dobročka, Edmund ; Osvald, Jozef ; Babchenko, Oleg ; Dzuba, Jaroslav ; Veselý, Marián ; Vančo, L'ubomír ; Vogrinčič, Peter ; Vincze, Andrej</creatorcontrib><description>The fabrication and characterization of the sequentially evaporated Ir/Al multilayer gates of AlGaN/GaN circular high electron mobility transistors formed by high temperature oxidation is reported. Annealing at temperature of 800 °C, for 60 s in O2 ambient makes possible to form a sharp gate interface with a high Schottky barrier height at RT (φb = 1.2 eV). It is also shown that high temperature oxidation can be an effective approach in reducing of both the gate and drain leakage currents of high electron mobility transistors (more than six orders). A comprehensive microstructural, electrical, and electro‐thermal characterization of the Ir/Al gates is carried out to study the thermal stability of the gate interface and high temperature performance of the devices. Stable operation of the devices with multilayer Ir/Al gates in the temperature range up to 500 °C is demonstrated. Here, it is proposed that the thermal stability of the interface is controlled by the formed aluminum oxide interfacial layer. Finally, perfectly clear pinch‐off characteristics and thermally induced threshold voltage (Vth) instability as low as −0.58 mV °C−1 are achieved. In this paper, AlGaN/GaN circular high electron mobility transistors (C‐HEMTs) capable to operate at elevated temperatures are presented. To withstand high temperature operation, a new design concept of the Schottky gate electrode is introduced. It consists of Ir/Al multilayers formed by high temperature oxidation (annealing in O2 at T = 800 oC for 60 s). It provides (a) high thermally stable Schottky barrier height, (b) low leakage currents, and (c) gate to be free of Au.</description><identifier>ISSN: 1862-6300</identifier><identifier>EISSN: 1862-6319</identifier><identifier>DOI: 10.1002/pssa.201700691</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>AlGaN ; Aluminum gallium nitrides ; Aluminum oxide ; Control stability ; Electrical properties ; Electron mobility ; GaN ; gate oxidation ; Gates ; High electron mobility transistors ; High temperature ; Interface stability ; multilayers ; Oxidation ; Schottky contacts ; Semiconductor devices ; Stability ; Thermal stability ; Thermodynamic properties ; Threshold voltage ; Transistors</subject><ispartof>Physica status solidi. A, Applications and materials science, 2017-12, Vol.214 (12), p.n/a</ispartof><rights>2017 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2017 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3171-93d246fb31f254a3f16e65fb1613294e358486fce00888b665b46e85d349e6f53</citedby><cites>FETCH-LOGICAL-c3171-93d246fb31f254a3f16e65fb1613294e358486fce00888b665b46e85d349e6f53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpssa.201700691$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpssa.201700691$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Lalinský, Tibor</creatorcontrib><creatorcontrib>Vanko, Gabriel</creatorcontrib><creatorcontrib>Dobročka, Edmund</creatorcontrib><creatorcontrib>Osvald, Jozef</creatorcontrib><creatorcontrib>Babchenko, Oleg</creatorcontrib><creatorcontrib>Dzuba, Jaroslav</creatorcontrib><creatorcontrib>Veselý, Marián</creatorcontrib><creatorcontrib>Vančo, L'ubomír</creatorcontrib><creatorcontrib>Vogrinčič, Peter</creatorcontrib><creatorcontrib>Vincze, Andrej</creatorcontrib><title>Ir/Al multilayer Gates for High Temperature Operated AlGaN/GaN HEMTs</title><title>Physica status solidi. A, Applications and materials science</title><description>The fabrication and characterization of the sequentially evaporated Ir/Al multilayer gates of AlGaN/GaN circular high electron mobility transistors formed by high temperature oxidation is reported. Annealing at temperature of 800 °C, for 60 s in O2 ambient makes possible to form a sharp gate interface with a high Schottky barrier height at RT (φb = 1.2 eV). It is also shown that high temperature oxidation can be an effective approach in reducing of both the gate and drain leakage currents of high electron mobility transistors (more than six orders). A comprehensive microstructural, electrical, and electro‐thermal characterization of the Ir/Al gates is carried out to study the thermal stability of the gate interface and high temperature performance of the devices. Stable operation of the devices with multilayer Ir/Al gates in the temperature range up to 500 °C is demonstrated. Here, it is proposed that the thermal stability of the interface is controlled by the formed aluminum oxide interfacial layer. Finally, perfectly clear pinch‐off characteristics and thermally induced threshold voltage (Vth) instability as low as −0.58 mV °C−1 are achieved. In this paper, AlGaN/GaN circular high electron mobility transistors (C‐HEMTs) capable to operate at elevated temperatures are presented. To withstand high temperature operation, a new design concept of the Schottky gate electrode is introduced. It consists of Ir/Al multilayers formed by high temperature oxidation (annealing in O2 at T = 800 oC for 60 s). It provides (a) high thermally stable Schottky barrier height, (b) low leakage currents, and (c) gate to be free of Au.</description><subject>AlGaN</subject><subject>Aluminum gallium nitrides</subject><subject>Aluminum oxide</subject><subject>Control stability</subject><subject>Electrical properties</subject><subject>Electron mobility</subject><subject>GaN</subject><subject>gate oxidation</subject><subject>Gates</subject><subject>High electron mobility transistors</subject><subject>High temperature</subject><subject>Interface stability</subject><subject>multilayers</subject><subject>Oxidation</subject><subject>Schottky contacts</subject><subject>Semiconductor devices</subject><subject>Stability</subject><subject>Thermal stability</subject><subject>Thermodynamic properties</subject><subject>Threshold voltage</subject><subject>Transistors</subject><issn>1862-6300</issn><issn>1862-6319</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkE1PwkAQhjdGExG9et7Ec2Gn-9HtsUEEEhQT8LzZwqyWFFt32xD-vUUMHj1M5j08z0zyEnIPbACMxcM6BDuIGSSMqRQuSA-0iiPFIb08Z8auyU0IW8aEFAn0yOPMD7OS7tqyKUp7QE8ntsFAXeXptHj_oCvc1eht03qki5-EG5qVE_sy7IZOx8-rcEuunC0D3v3uPnl7Gq9G02i-mMxG2Txac0ggSvkmFsrlHFwsheUOFCrpclDA41Qgl1po5dbImNY6V0rmQqGWGy5SVE7yPnk43a199dViaMy2av1n99JAmvBEaS1FRw1O1NpXIXh0pvbFzvqDAWaOTZljU-bcVCekJ2FflHj4hzavy2X2534D52lqNg</recordid><startdate>201712</startdate><enddate>201712</enddate><creator>Lalinský, Tibor</creator><creator>Vanko, Gabriel</creator><creator>Dobročka, Edmund</creator><creator>Osvald, Jozef</creator><creator>Babchenko, Oleg</creator><creator>Dzuba, Jaroslav</creator><creator>Veselý, Marián</creator><creator>Vančo, L'ubomír</creator><creator>Vogrinčič, Peter</creator><creator>Vincze, Andrej</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>201712</creationdate><title>Ir/Al multilayer Gates for High Temperature Operated AlGaN/GaN HEMTs</title><author>Lalinský, Tibor ; Vanko, Gabriel ; Dobročka, Edmund ; Osvald, Jozef ; Babchenko, Oleg ; Dzuba, Jaroslav ; Veselý, Marián ; Vančo, L'ubomír ; Vogrinčič, Peter ; Vincze, Andrej</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3171-93d246fb31f254a3f16e65fb1613294e358486fce00888b665b46e85d349e6f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>AlGaN</topic><topic>Aluminum gallium nitrides</topic><topic>Aluminum oxide</topic><topic>Control stability</topic><topic>Electrical properties</topic><topic>Electron mobility</topic><topic>GaN</topic><topic>gate oxidation</topic><topic>Gates</topic><topic>High electron mobility transistors</topic><topic>High temperature</topic><topic>Interface stability</topic><topic>multilayers</topic><topic>Oxidation</topic><topic>Schottky contacts</topic><topic>Semiconductor devices</topic><topic>Stability</topic><topic>Thermal stability</topic><topic>Thermodynamic properties</topic><topic>Threshold voltage</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lalinský, Tibor</creatorcontrib><creatorcontrib>Vanko, Gabriel</creatorcontrib><creatorcontrib>Dobročka, Edmund</creatorcontrib><creatorcontrib>Osvald, Jozef</creatorcontrib><creatorcontrib>Babchenko, Oleg</creatorcontrib><creatorcontrib>Dzuba, Jaroslav</creatorcontrib><creatorcontrib>Veselý, Marián</creatorcontrib><creatorcontrib>Vančo, L'ubomír</creatorcontrib><creatorcontrib>Vogrinčič, Peter</creatorcontrib><creatorcontrib>Vincze, Andrej</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica status solidi. A, Applications and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lalinský, Tibor</au><au>Vanko, Gabriel</au><au>Dobročka, Edmund</au><au>Osvald, Jozef</au><au>Babchenko, Oleg</au><au>Dzuba, Jaroslav</au><au>Veselý, Marián</au><au>Vančo, L'ubomír</au><au>Vogrinčič, Peter</au><au>Vincze, Andrej</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ir/Al multilayer Gates for High Temperature Operated AlGaN/GaN HEMTs</atitle><jtitle>Physica status solidi. A, Applications and materials science</jtitle><date>2017-12</date><risdate>2017</risdate><volume>214</volume><issue>12</issue><epage>n/a</epage><issn>1862-6300</issn><eissn>1862-6319</eissn><abstract>The fabrication and characterization of the sequentially evaporated Ir/Al multilayer gates of AlGaN/GaN circular high electron mobility transistors formed by high temperature oxidation is reported. Annealing at temperature of 800 °C, for 60 s in O2 ambient makes possible to form a sharp gate interface with a high Schottky barrier height at RT (φb = 1.2 eV). It is also shown that high temperature oxidation can be an effective approach in reducing of both the gate and drain leakage currents of high electron mobility transistors (more than six orders). A comprehensive microstructural, electrical, and electro‐thermal characterization of the Ir/Al gates is carried out to study the thermal stability of the gate interface and high temperature performance of the devices. Stable operation of the devices with multilayer Ir/Al gates in the temperature range up to 500 °C is demonstrated. Here, it is proposed that the thermal stability of the interface is controlled by the formed aluminum oxide interfacial layer. Finally, perfectly clear pinch‐off characteristics and thermally induced threshold voltage (Vth) instability as low as −0.58 mV °C−1 are achieved. In this paper, AlGaN/GaN circular high electron mobility transistors (C‐HEMTs) capable to operate at elevated temperatures are presented. To withstand high temperature operation, a new design concept of the Schottky gate electrode is introduced. It consists of Ir/Al multilayers formed by high temperature oxidation (annealing in O2 at T = 800 oC for 60 s). It provides (a) high thermally stable Schottky barrier height, (b) low leakage currents, and (c) gate to be free of Au.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/pssa.201700691</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1862-6300
ispartof Physica status solidi. A, Applications and materials science, 2017-12, Vol.214 (12), p.n/a
issn 1862-6300
1862-6319
language eng
recordid cdi_proquest_journals_1973768854
source Wiley Online Library Journals Frontfile Complete
subjects AlGaN
Aluminum gallium nitrides
Aluminum oxide
Control stability
Electrical properties
Electron mobility
GaN
gate oxidation
Gates
High electron mobility transistors
High temperature
Interface stability
multilayers
Oxidation
Schottky contacts
Semiconductor devices
Stability
Thermal stability
Thermodynamic properties
Threshold voltage
Transistors
title Ir/Al multilayer Gates for High Temperature Operated AlGaN/GaN HEMTs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T11%3A54%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ir/Al%20multilayer%20Gates%20for%20High%20Temperature%20Operated%20AlGaN/GaN%20HEMTs&rft.jtitle=Physica%20status%20solidi.%20A,%20Applications%20and%20materials%20science&rft.au=Lalinsk%C3%BD,%20Tibor&rft.date=2017-12&rft.volume=214&rft.issue=12&rft.epage=n/a&rft.issn=1862-6300&rft.eissn=1862-6319&rft_id=info:doi/10.1002/pssa.201700691&rft_dat=%3Cproquest_cross%3E1973768854%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1973768854&rft_id=info:pmid/&rfr_iscdi=true